【題目】如圖,ABC中,ABAC10,tanA2,BEAC于點E,D是線段BE上的一個動點,則的最小值是( )

A. B. C. D. 10

【答案】B

【解析】

如圖,作DHABH,CMABM.由tanA==2,設(shè)AE=a,BE=2a,利用勾股定理構(gòu)建方程求出a,再證明DH=BD,推出CD+BD=CD+DH,由垂線段最短即可解決問題.

如圖,作DHABHCMABM

BEAC,

∴∠AEB=90°,

tanA==2,設(shè)AE=a,BE=2a,

則有:100=a2+4a2,

a2=20,

a=2-2(舍棄),

BE=2a=4,

AB=AC,BEAC,CMAB,

CM=BE=4(等腰三角形兩腰上的高相等))

∵∠DBH=ABE,∠BHD=BEA

,

DH=BD,

CD+BD=CD+DH,

CD+DH≥CM,

CD+BD≥4,

CD+BD的最小值為4

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

運動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

2)統(tǒng)計圖中,A類所對應(yīng)的扇形圓心角的度數(shù)為   ;

3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   

4)鄭州市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級數(shù)進(jìn)行統(tǒng)計,并繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)五屆藝術(shù)節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________

(2)補全折線統(tǒng)計圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項藝術(shù)形式中任選兩項表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,,表示).利用樹狀圖或表格求出該班選擇兩項的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,BDABC的角平分線,若AC= 12 ,則在ABDAB邊上的高為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx-5的經(jīng)過點(-2,-15)、點(2,1).

1)求拋物線的表達(dá)式;

2)請用配方法求拋物線頂點A的坐標(biāo);

3)已知點M坐標(biāo)為(2,—1).設(shè)動點P、Q分別在拋物線和對稱軸上,當(dāng)以AP,Q,M為頂點的四邊形是平行四邊形時,求P、Q兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某無人機興趣小組在操場上開展活動(如圖),此時無人機在離地面30米的D處,無人機測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答.

(1)解不等式①,得________;

(2)解不等式②,得________;

(3)把不等式①和②的解集在數(shù)軸上表示出來;

(4)原不等式組的解集為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)yx2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點A的坐標(biāo)為(﹣3,0),點B的坐標(biāo)為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當(dāng)其中一點到達(dá)終點時,另一點隨之停止運動,設(shè)運動時間為t秒.連接PQ

1)填空:b ,c ;

2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;

3)點M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案