設(shè)拋物線y=x2+(2a+1)x+2a+
5
4
的圖象與x軸只有一個交點.
(1)求a的值;
(2)求a18+323a-6的值.
(1)∵拋物線y=x2+(2a+1)x+2a+
5
4
的圖象與x軸只有一個交點,
∴△=(2a+1)2-4×1×(2a+
5
4
)
=0,
解得:a=
5
2


(2)∵a=
5
2

∴a是方程x2-x-1=0的根,
∴a2-a-1=0,
∵a≠0,
a-
1
a
=1,
a2+
1
a2

=(a-
1
a
)2
+2
=3,
a4+
1
a4

=(a2+
1
a2
)2
-2
=7,
a8+
1
a8

=(a4+
1
a4
)2
-2
=47,
a12+
1
a12

=(a4+
1
a4
)(a8+
1
a8
-1)
=7×(47-1)
=322,
a18+323a-6
=(a18+
1
a6
)+
322
a6

=a6a12+
1
a12
)+
322
a6

=322a6+
322
a6

=322(a6+
1
a6
),
a6+
1
a6

=(a2+
1
a2
)(a4+
1
a4
-1)
=3×(7-1)
=18.
∴322(a6+
1
a6
)=322×18=5796.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時,b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y=x2+bx+c向下平移1個單位,再向左平移5個單位后,所得拋物線的頂點坐標(biāo)為(-2,0),則原拋物線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、設(shè)拋物線y=x2+kx+4與x軸有兩個不同的交點(x1,0),(x2,0),則下列結(jié)論中,一定成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=x2-4x+k與x軸交于A、B兩點,與y軸交于點C(0,-5).
(1)k=
-5
-5
,點A的坐標(biāo)為
(-1,0)
(-1,0)
,點B的坐標(biāo)為
(5,0)
(5,0)

(2)設(shè)拋物線y=x2-4x+k的頂點為M,求三角形ABM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)二模)已知關(guān)于x的方程x2-(m-2)x+m-3=0.
(1)求證:此方程總有兩個實數(shù)根;
(2)設(shè)拋物線y=x2-(m-2)x+m-3與y軸交于點M,若拋物線與x軸的一個交點關(guān)于直線y=-x的對稱點恰好是點M,求m的值.

查看答案和解析>>

同步練習(xí)冊答案