【題目】如圖所示,在矩形ABCD中,對角線AC,BD相交于點O.
(1)過點O作OE⊥BC于點E,連接DE交OC于點F,作FG⊥BC于G點,則△ABC與△FGC是位似圖形嗎?若是,請說出位似中心,并求出位似比;若不是,請說明理由.
(2)連接DG交AC于點H,作HI⊥BC于I,試確定的值.
【答案】(1)是位似圖形,位似中心是點C,位似比為3;(2).
【解析】
(1)根據(jù)相似三角形的判定定理證明△ABC∽△FGC,根據(jù)位似變換的概念和位似中心的概念解答即可,根據(jù)相似三角形的性質(zhì)求出兩個三角形的相似比,得到位似比;
(2)根據(jù)相似三角形的性質(zhì)進行計算即可.
(1)∵FG⊥BC,AB⊥BC,
∴FG∥AB,
∴△ABC∽△FGC,
∵△ABC與△FGC對應頂點的連線相交于一點,對應邊互相平行或重合,
∴△ABC與△FGC是位似圖形,位似中心是點C,
∵BO=OD,OE∥CD,
∴,
∴,
∴,
∴,
則△ABC與△FGC的位似比為3;
(2)由(1)得,,FG∥CD,
∴,
∴,又,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,把以格點為頂點的三角形稱為格點三角形(每個小方格都是邊長為1的正方形).圖中△ABC是格點三角形,點A,B,C的坐標分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).
(1)以O為旋轉中心,把△ABC繞O點順時針旋轉90°后得到△A1B1C1,畫出△A1B1C1;
(2)以O為位似中心,在第一象限內(nèi)把△ABC放大2倍后得到△A2B2C2,畫出△A2B2C2;
(3)△ABC內(nèi)有一點P(a,b),寫出經(jīng)過(2)位似變換后P的對應點P1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)
(1)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);
(2)通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點,且=,弦MN交AB于點C,BM平分∠ABD,MF⊥BD于點F.
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個矩形ABCD的較短邊長為2.
(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;
(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=6,點M,N分別在AD,BC上,且AM=AD,BN=BC,E為直線BC上一動點,連接DE,將△DCE沿DE所在直線翻折得到△DC′E,當點C′恰好落在直線MN上時,CE的長為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品的進價為每件30元,銷售過程中發(fā)現(xiàn)月銷售量y(件)與銷售單價x(元)之間的關系如圖所示.
(1)根據(jù)圖象直接寫出y與x之間的函數(shù)關系式.
(2)設這種商品月利潤為W(元),求W與x之間的函數(shù)關系式.
(3)這種商品的銷售單價定為多少元時,月利潤最大?最大月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠BAD=120°,點E在射線AC上(不包括點A和點C),過點E的直線GH交直線AD于點G,交直線BC于點H,且GH∥DC,點F在BC的延長線上,CF=AG,連接ED,EF,DF.
(1)如圖1,當點E在線段AC上時,
①判斷△AEG的形狀,并說明理由.
②求證:△DEF是等邊三角形.
(2)如圖2,當點E在AC的延長線上時,△DEF是等邊三角形嗎?如果是,請證明你的結論;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結論:①;②; ③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正確結論的序號是______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com