【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結(jié)論:①∠AED=CED;AB=HF,BH=HF;BC﹣CF=2HE;OE=OD;其中正確結(jié)論的序號是_____________

【答案】①③⑤

【解析】分析:①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出

∠CED=67.5°,從而判斷出①正確;

②判斷出△ABH不是等邊三角形,從而得到AB≠BH,即AB≠HF,得到②錯誤.

③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BH=HF,判斷出③正確;

④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確;

⑤求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出⑤正確;

解析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,

在△ABE和△AHD中,

{

∠BAE=∠DAE

∠ABE=∠AHD=90°

AE=AD

∴△ABE≌△AHD(AAS),

∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=

∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;

∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故②錯誤;

∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,

在△BEH和△HDF中,

{

∠EBH=∠OHD=22.5°

BE=DH

∠AEB=∠HDF=45°

∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故正確;

∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故正確;

∵AB=AH,∵∠AHB=∠OHE=∠AHB(對頂角相等),

∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故⑤正確;

綜上所述,結(jié)論正確的是①③④⑤共4個.

故答案為①③④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形一邊上的中線把原三角形分成兩個(
A.形狀相同的三角形
B.面積相等的三角形
C.直角三角形
D.周長相等的三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過十五邊形的一個頂點可以作________________ 條對角線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點E(a,﹣5)與點F(﹣2,b)關(guān)于y軸對稱,則a= , b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算,結(jié)果正確的是( 。

A. a+2a2=3a3 B. 2a+b=2ab

C. 4a﹣a=3 D. 3a2b﹣2ba2=a2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15,BC=14,AC=13,求ABC的面積.

某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

思路:(1) ADBCD,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為橋梁,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=分別與x軸、y軸交于點A、B,且點A的坐標(biāo)為(8,0),四邊形ABCD是正方形.

1)填空:b= ;

2)點D的坐標(biāo)為 ;

3)點M是線段AB上的一個動點(點AB除外),在x軸上方是否存在另一個點N,使得以OB、M、N為頂點的四邊形是菱形?若不存在,請說明理由;若存在,請求出點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)130000可用科學(xué)記數(shù)法表示為( 。

A. 13×104 B. 1.3×105 C. 0.13×106 D. 1.3×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,高速公路旁有一個測速站M到公路l的距離MN為60米,一輛小汽車在公路l上行駛,測得此車從點A行駛到點B所有的時間為3秒,已知∠MAN=30°,∠MBN=60°.

(1)計算此車從A到B的平均速度為每秒多少米(結(jié)果保留整數(shù));

(2)若此高速公路限速80千米/時,判斷此車是否超速.(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

同步練習(xí)冊答案