【題目】已知等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分為915兩部分,則這個(gè)等腰三角形的腰長(zhǎng)為__________

【答案】10

【解析】

設(shè)腰長(zhǎng)為x,底邊長(zhǎng)為y,根據(jù)等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分為915兩部分,列方程解得即可.

解:設(shè)腰長(zhǎng)為xcm,底為ycm,

根據(jù)題意可知:x-y=15-9=6cm)或y-x=15-9=6cm),
∵周長(zhǎng)為24,即x+x+y=24,

當(dāng)腰長(zhǎng)大于底邊時(shí),即x-y=6,可解得:x=10y=4,

此時(shí)三角形的三邊為1010,4,滿(mǎn)足三角形的三邊關(guān)系;

當(dāng)腰長(zhǎng)小于底邊時(shí),即y-x=6,可解得:x=6y=12,

此時(shí)三角形的三邊為66,12,不滿(mǎn)足三角形的三邊關(guān)系;

綜上可知,三角形的腰長(zhǎng)為10cm,

故答案為:10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 A 時(shí)測(cè)得某樹(shù)(垂直于地面)的影長(zhǎng)為 4 ,B 時(shí)又測(cè)得該樹(shù)的影長(zhǎng)為 16 若兩次日 照的光線互相垂直,則樹(shù)的高度為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校與圖書(shū)館在冋一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)日的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)根據(jù)圖象信息,當(dāng)t   分鐘時(shí)甲乙兩人相遇,乙的速度為   /分鐘;

2)求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知PA、PB是⊙O的切線,A、B為切點(diǎn),連接AO并延長(zhǎng),交PB的延長(zhǎng)線于點(diǎn)C,連接PO,交⊙O于點(diǎn)D.

(1)如圖,若∠AOP=65°,求∠C的大。

(2)如圖,連接BD,若BDAC,求∠C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(2,0)、B(﹣4,0)兩點(diǎn),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F,G分別在線段BC、AC上.

(I)求拋物線的解析式;

(II)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;

(III)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=kDF.若點(diǎn)M在拋物線上,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)FABCD的邊AD上的三等分點(diǎn),BFAC于點(diǎn)E,如果AEF的面積為2,那么四邊形CDFE的面積等于( )

A. 18 B. 22 C. 24 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果售價(jià)超過(guò)50元但不超過(guò)80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣(mài)1件;如果售價(jià)超過(guò)80元后,若再漲價(jià),則每漲1元每月少賣(mài)3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷(xiāo)售量為y件.

(1)yx的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;

(2)設(shè)每月的銷(xiāo)售利潤(rùn)為W,請(qǐng)直接寫(xiě)出Wx的函數(shù)關(guān)系式;

(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).

小剛同學(xué)的思路是:將BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得P′PC是等邊三角形,而PP′A又是直角三角形(由勾股定理的逆定理可證),所以APB=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊ABC的邊長(zhǎng)為,問(wèn)題得到解決.

請(qǐng)你參考小剛同學(xué)的思路,探究并解決下列問(wèn)題:

如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=2,PC=.求BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案