如圖,已知△ABC中,D是AC邊上一點(diǎn),∠A=36°,∠C=72°,∠ADB=108°.
求證:
(1)AD=BD=BC;
(2)點(diǎn)D是線段AC的黃金分割點(diǎn).

【答案】分析:(1)根據(jù)三角形的內(nèi)角和是180度,和題中給出的角的度數(shù),可求得各角的度數(shù),從而得出AD=BD=BC.
(2)利用三角形的相似來(lái)證明點(diǎn)D是線段AC的黃金分割點(diǎn).
解答:證明:(1)∵∠A=36°,∠C=72°,
∴∠ABC=72°,∠ADB=108°,
∴∠ABD=36°,
∴△ADB、△BDC是等腰三角形,
∴AD=BD=BC.

(2)∵∠DBC=∠A=36°,∠C=∠C,
∴△ABC∽△BDC,
∴BC:AC=CD:BC,
∴BC2=AC•DC,
∵BC=AD,
∴AD2=AC•DC,
∴點(diǎn)D是線段AC的黃金分割點(diǎn).
點(diǎn)評(píng):(1)考查了等腰三角形的判定;
(2)考查了學(xué)生黃金分割點(diǎn)的證明,把一條線段分成兩部分,使其中較長(zhǎng)的線段為全線段與較短線段的比例中項(xiàng),這樣的線段分割叫做黃金分割,他們的比值()叫做黃金比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過(guò)A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案