【題目】如圖,OB是∠AOC的平分線,OD是∠EOC的平分線.
(1)如果∠AOD=75°,∠BOC=19°,求∠DOE的度數(shù)。
(2)如果∠BOD=56°,求∠AOE的度數(shù)。
【答案】
(1)解: 是 的平分線,
, 是 的平分線,
(2)解: 是 的平分線, 是 的平分線,
【解析】(1)根據(jù)角平分線的定義得出∠AOB=∠BOC,求出∠BOC和∠AOC的度數(shù),再根據(jù)∠DOC=∠AOD∠AOC,求出∠DOC的度數(shù),再根據(jù)OD是∠EOC的平分線得出∠DOE=∠DOC,就可求出結(jié)果。
(2)根據(jù)角平分線的定義得出∠AOC=2∠BOC, ∠COE=2∠COD,再根據(jù)∠AOE=∠AOC+∠COE,得出∠AOE=2∠BOD,就可求出∠AOE的度數(shù)。
【考點(diǎn)精析】掌握角的平分線和角的運(yùn)算是解答本題的根本,需要知道從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來(lái)表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列說(shuō)法正確的是( )
A.①②都有實(shí)數(shù)解 B.①無(wú)實(shí)數(shù)解,②有實(shí)數(shù)解
C.①有實(shí)數(shù)解,②無(wú)實(shí)數(shù)解 D.①②都無(wú)實(shí)數(shù)解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設(shè)筷子露在杯子外面的長(zhǎng)度hcm,則h的取值范圍是( )
A.h≤17cm
B.h≥8cm
C.15cm≤h≤16cm
D.7cm≤h≤16cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)M、N在數(shù)軸上分別表示實(shí)數(shù)m,n,在數(shù)軸上M,N兩點(diǎn)之間的距離表示為MN=m-n(m>n)或n-m(m<n)或︱m-n︱.利用數(shù)形結(jié)合思想解決下列問(wèn)題:
已知數(shù)軸上點(diǎn)A與點(diǎn)B的距離為16個(gè)單位長(zhǎng)度,點(diǎn)A在原點(diǎn)的左側(cè),到原點(diǎn)的距離為26個(gè)單位長(zhǎng)度,點(diǎn)B在點(diǎn)A的右側(cè),點(diǎn)C表示的數(shù)與點(diǎn)B表示的數(shù)互為相反數(shù),動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)點(diǎn)A表示的數(shù)為 , 點(diǎn)B表示的數(shù)為 , 點(diǎn)C表示的數(shù)為 .
(2)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離: PA= , PC= .
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng), Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.
①在點(diǎn)Q向點(diǎn)C運(yùn)動(dòng)過(guò)程中,能否追上點(diǎn)P?若能,請(qǐng)求出點(diǎn)Q運(yùn)動(dòng)幾秒追上.
②在點(diǎn)Q開(kāi)始運(yùn)動(dòng)后,P、Q兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請(qǐng)求出此時(shí)點(diǎn)P表示的數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過(guò)C作CF⊥AE,垂足為F,過(guò)B作BD⊥BC交CF的延長(zhǎng)線于D.
(1)求證:AE=CD;
(2)若AC=12cm,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
油桶制造廠的某車(chē)間主要負(fù)責(zé)生產(chǎn)制造油桶用的圓形鐵片和長(zhǎng)方形鐵片,該車(chē)間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長(zhǎng)方形鐵片80片.如圖,一個(gè)油桶由兩個(gè)圓形鐵片和一個(gè)長(zhǎng)方形鐵片相配套.生產(chǎn)圓形鐵片和長(zhǎng)方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com