(2012•貴港)如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長(zhǎng)ED到H使DH=BM,連接AM,AH,則以下四個(gè)結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD=
3
4
AM2
其中正確結(jié)論的個(gè)數(shù)是( 。
分析:根據(jù)菱形的四條邊都相等,先判定△ABD是等邊三角形,再根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,再求出DF=CE,然后利用“邊角邊”即可證明△BDF≌△DCE,從而判定①正確;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=∠EDC,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可以求出∠DMF=∠BDC=60°,再根據(jù)平角等于180°即可求出∠BMD=120°,從而判定②正確;根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及平行線的性質(zhì)求出∠ABM=∠ADH,再利用“邊角邊”證明△ABM和△ADH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AH=AM,對(duì)應(yīng)角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,從而判定出△AMH是等邊三角形,判定出③正確;根據(jù)全等三角形的面積相等可得△AMH的面積等于四邊形ABMD的面積,然后判定出④錯(cuò)誤.
解答:解:在菱形ABCD中,∵AB=BD,
∴AB=BD=AD,
∴△ABD是等邊三角形,
∴根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,
∵BE=CF,
∴BC-BE=CD-CF,
即CE=DF,
在△BDF和△DCE中,
CE=DF
∠BDF=∠C=60°
BD=CD
,
∴△BDF≌△DCE(SAS),故①小題正確;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°-∠DMF=180°-60°=120°,故②小題正確;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中,
AB=AD
∠ADH=∠ABM
DH=BM
,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等邊三角形,故③小題正確;
∵△ABM≌△ADH,
∴△AMH的面積等于四邊形ABMD的面積,
又∵△AMH的面積=
1
2
AM•
3
2
AM=
3
4
AM2
∴S四邊形ABMD=
3
4
AM2,
S四邊形ABCD≠S四邊形ABMD,故④小題錯(cuò)誤,
綜上所述,正確的是①②③共3個(gè).
故選C.
點(diǎn)評(píng):本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),題目較為復(fù)雜,特別是圖形的識(shí)別有難度,從圖形中準(zhǔn)確確定出全等三角形并找出全等的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴港)如圖,在?ABCD中,延長(zhǎng)CD到E,使DE=CD,連接BE交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴港)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時(shí)針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴港)如圖,直線y=
1
4
x與雙曲線y=
k
x
相交于A、B兩點(diǎn),BC⊥x軸于點(diǎn)C(-4,0).
(1)求A、B兩點(diǎn)的坐標(biāo)及雙曲線的解析式;
(2)若經(jīng)過(guò)點(diǎn)A的直線與x軸的正半軸交于點(diǎn)D,與y軸的正半軸交于點(diǎn)E,且△AOE的面積為10,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴港)如圖是由若干個(gè)大小相同的正方體搭成的幾何體的三視圖,則該幾何體所用的正方體的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴港)如圖,PA、PB是⊙O的切線,A、B是切點(diǎn),點(diǎn)C是劣弧AB上的一個(gè)動(dòng)點(diǎn),若∠P=40°,則∠ACB的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案