【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至的位置,此時(shí)點(diǎn)的橫坐標(biāo)為3,則點(diǎn)的坐標(biāo)為
A. (4,) B. (3,) C. (4,) D. (3,)
【答案】A
【解析】分析:作AM⊥x軸于點(diǎn)M.根據(jù)等邊三角形的性質(zhì)得出OA=OB=2,∠AOB=60°,在直角△OAM中利用含30°角的直角三角形的性質(zhì)求出OM=OA=1,AM=OM=,則A(1,),直線OA的解析式為y=x,將x=3代入,求出y=3,那么A′(3,3),由一對(duì)對(duì)應(yīng)點(diǎn)A與A′的坐標(biāo)求出平移規(guī)律,再根據(jù)此平移規(guī)律即可求出點(diǎn)B′的坐標(biāo).
詳解:如圖,作AM⊥x軸于點(diǎn)M.
∵正三角形OAB的頂點(diǎn)B的坐標(biāo)為(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直線OA的解析式為y=x,∴當(dāng)x=3時(shí),y=3,∴A′(3,3),∴將點(diǎn)A向右平移2個(gè)單位,再向上平移2個(gè)單位后可得A′,∴將點(diǎn)B(2,0)向右平移2個(gè)單位,再向上平移2個(gè)單位后可得B′,∴點(diǎn)B′的坐標(biāo)為(4,2).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代一部數(shù)學(xué)專著,其中第八卷《方程》記載:“今有五雀六燕,集稱之衝,雀俱重,燕俱輕,一雀一燕交而處,衡視平”,意思是“五只雀比六只燕重.但是將這群雀和這群燕互相交換一只以后,兩群鳥一樣重,如果假設(shè)一只雀重x兩,則用含x的式子表示一只燕的重量為_____兩.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育測(cè)試時(shí),初三的一名高個(gè)子男生推鉛球,已知鉛球所經(jīng)過的路線是某二次函數(shù)圖象的一部分(如圖),若這個(gè)男生出手處A點(diǎn)的坐標(biāo)為(0,2),鉛球路線的最高處B點(diǎn)的坐標(biāo)為B(6,5).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)該男生把鉛球推出去多遠(yuǎn)?(精確到0.01米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖象反映的過程是:小強(qiáng)星期天從家跑步去體育場(chǎng),在那里鍛煉了一會(huì)兒后又走到文具店去買筆,然后步行回家,其中x表示時(shí)間,y表示小強(qiáng)離家的距離,根據(jù)圖象回答下列問題.
(1)體育場(chǎng)離小強(qiáng)家有多遠(yuǎn)?小強(qiáng)從家到體育場(chǎng)用了多長(zhǎng)時(shí)間?
(2)體育場(chǎng)距文具店多遠(yuǎn)?
(3)小強(qiáng)在文具店逗留了多長(zhǎng)時(shí)間?
(4)小強(qiáng)從文具店回家的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過格點(diǎn)A,B,C作一圓弧,點(diǎn)B與圖中4×7方格中的格點(diǎn)的連線中,能夠與該圓弧相切的格點(diǎn)個(gè)數(shù)有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動(dòng),將含30°的三角尺ABC繞頂點(diǎn)A順時(shí)針轉(zhuǎn)動(dòng),使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<∠BAD<180°)所有可能符合條件的度數(shù)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把棱長(zhǎng)為的若干個(gè)小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)
該幾何體中有多少個(gè)小正方體?
畫出從正面看到的圖形;
寫出涂上顏色部分的總面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足(a-)2++=0,
(1)求a、b、c的值.
(2)試問以a、b、c為邊能否構(gòu)成直角三角形?若能構(gòu)成,求出直角三角形周長(zhǎng);若不能構(gòu)成直角三角形,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com