【題目】體育課上,20人一組進(jìn)行足球比賽,每人射點(diǎn)球5次,已知某一組的進(jìn)球總數(shù)為49個(gè),進(jìn)球情況記錄如下表,其中進(jìn)2個(gè)球的有x人,進(jìn)3個(gè)球的有y人,若(x, y)恰好是兩條直線的交點(diǎn)坐標(biāo),則這兩條直線的解析式是( 。

A. y=x+9 B. y=-x+9

C. y=-x+9 D. y=x+9

【答案】C

【解析】

根據(jù)一共20個(gè)人,進(jìn)球49個(gè)列出關(guān)于x、y的方程即可得到答案.

根據(jù)進(jìn)球總數(shù)為49個(gè)得分:2x+3y=49﹣5﹣3×4﹣2×5=22,即;

∵20人一組進(jìn)行足球比賽,

∴1+5+x+y+3+2=20,

整理得:y=﹣x+9.

所以,若(x, y)恰好是兩條直線的交點(diǎn)坐標(biāo),則這兩條直線的解析式是y=-x+9.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B、C兩地相距120海里.
(1)求出此時(shí)點(diǎn)A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè)ィ?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測得點(diǎn)B在A′的南偏東75°的方向上,求此時(shí)“中國海監(jiān)50”的航行距離.(注:結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如圖.當(dāng)COD在∠AOB的內(nèi)部時(shí)

AOC=39°40′,求DOE的度數(shù);

AOC=α,求DOE的度數(shù)(用含α的代數(shù)式表示),

(2)如圖,當(dāng)COD在AOB的外部時(shí),

請直接寫出AOC與DOE的度數(shù)之間的關(guān)系;

AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出AOF與DOE的度數(shù)之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了進(jìn)行資源的再利用,學(xué)校準(zhǔn)備針對(duì)庫存的桌椅進(jìn)行維修,現(xiàn)有甲、乙兩木工組,甲每天修桌凳14 套,乙每天比甲多7套,甲單獨(dú)修完這些桌凳比乙單獨(dú)修完多用20天.學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi).

(1)請問學(xué)校庫存多少套桌凳?

(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:①由甲單獨(dú)修理;②由乙單獨(dú)修理;③甲、乙合作同時(shí)修理.你選哪種方案,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若MAB與NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且ACB=60°時(shí),有以下兩個(gè)結(jié)論:

①∠APB=120°AF+BE=AB.

那么,當(dāng)AMBN時(shí):

(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;

(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx﹣2(a≠0)的圖象的頂點(diǎn)在第四象限,且過點(diǎn)(﹣1,0),當(dāng)a﹣b為整數(shù)時(shí),ab的值為( 。
A.或1
B.或1
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對(duì)數(shù), 為“相伴數(shù)對(duì)”,記為

(1)若是“相伴數(shù)對(duì)”,求的值;

(2)寫出一個(gè)“相伴數(shù)對(duì)” ,其中;

(3)若是“相伴數(shù)對(duì)”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一公路的道路維修工程,準(zhǔn)備從甲、乙兩個(gè)工程隊(duì)選一個(gè)隊(duì)單獨(dú)完成.根據(jù)兩隊(duì)每天的工程費(fèi)用和每天完成的工程量可知,若由兩隊(duì)合做此項(xiàng)維修工程,6天可以完成,共需工程費(fèi)用385200元,若單獨(dú)完成此項(xiàng)維修工程,甲隊(duì)比乙隊(duì)少用5天,每天的工程費(fèi)用甲隊(duì)比乙隊(duì)多4000元,從節(jié)省資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?

查看答案和解析>>

同步練習(xí)冊答案