【題目】一組數(shù)據(jù)0,1,2,2,3,4,若添加一個(gè)數(shù)據(jù)2,則下列統(tǒng)計(jì)量中發(fā)生變化的是( )
A.方差B.中位數(shù)C.平均數(shù)D.極差
【答案】A
【解析】
根據(jù)平均數(shù)、中位數(shù)、極差、方差的定義和公式求解即可.
解:A、原來數(shù)據(jù)的方差=[(0﹣2)2+(1﹣2)2+2×(2﹣2)2+(3﹣2)2+(4﹣2)2]=,
添加數(shù)字2后的方差=[(0﹣2)2+(1﹣2)2+3×(2﹣2)2+(3﹣2)2+(4﹣2)2]=,故方差發(fā)生了變化.
B、原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故中位數(shù)不發(fā)生變化;
C.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故平均數(shù)不發(fā)生變化;
D.原來數(shù)據(jù)的極差是4,添加數(shù)字2后極差仍為4,故極差不發(fā)生變化;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?
(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點(diǎn)D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點(diǎn)F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點(diǎn)D、E分別在邊CB、BA的延長線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點(diǎn)O是AB邊的垂直平分線與AC的交點(diǎn),點(diǎn)D、E分別在OB、BA的延長線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年,國家大力提倡從純?nèi)加推囅蛐履茉雌囖D(zhuǎn)型.某汽車制造企業(yè)推出了一款新型油電混合動(dòng)力汽車(在行駛過程中,既可以使用汽油驅(qū)動(dòng)汽年,也可以使用電力驅(qū)動(dòng)汽車,汽油驅(qū)動(dòng)和電力驅(qū)動(dòng)不同時(shí)工作).經(jīng)試驗(yàn),該型汽車從甲地駛向乙地,只用汽油進(jìn)行驅(qū)動(dòng),費(fèi)用為56元,只用電力進(jìn)行驅(qū)動(dòng),費(fèi)用為20元.已知每行駛1千米,只用汽油驅(qū)動(dòng)的費(fèi)用比只用電力驅(qū)動(dòng)的費(fèi)用多0.36元.
(1)求每行駛1千米,只用汽油驅(qū)動(dòng)的費(fèi)用.
(2)要使從甲地到乙地所需要的燃油費(fèi)用和電力費(fèi)用不超過38元,則至少要用電力驅(qū)動(dòng)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,點(diǎn)D、E分別為AB、AC上的點(diǎn),且DE∥BC.將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)B、A、E在同一條直線上,連接BD、EC.下列結(jié)論:①△ADE的旋轉(zhuǎn)角為120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正確的有( )
A.②③B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個(gè)車間各有工人200人,為了解這兩個(gè)車間工人的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)從甲、乙兩個(gè)車間各抽取20名工人進(jìn)行生產(chǎn)技能測(cè)試,測(cè)試成績?nèi)缦拢?/span>
甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52
整理數(shù)據(jù)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤99 | |
甲 | 0 | _____ | 11 | ______ | 1 |
乙 | 1 | 2 | 5 | 10 | ______ |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70~79分為生產(chǎn)技能良好,60~69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲 | _____ | 77.5 | 75 |
乙 | 78 | _____ | ______ |
得出結(jié)論可以推斷_____車間工人的生產(chǎn)技能水平較高,理由為______.(至少從兩個(gè)角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、圖2,在圓O中,OA=1,AB=,將弦AB與弧AB所圍成的弓形(包括邊界的陰影部分)繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(0≤α≤360),點(diǎn)A的對(duì)應(yīng)點(diǎn)是A′.
(1)點(diǎn)O到線段AB的距離是 ;∠AOB= °;點(diǎn)O落在陰影部分(包括邊界)時(shí),α的取值范圍是 ;
(2)如圖3,線段B與優(yōu)弧ACB的交點(diǎn)是D,當(dāng)∠A′BA=90°時(shí),說明點(diǎn)D在AO的延長線上;
(3)當(dāng)直線A′B與圓O相切時(shí),求α的值并求此時(shí)點(diǎn)A′運(yùn)動(dòng)路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,AC=BC,∠CAD=∠CBD.
(1)求證:CD平分∠ACB;
(2)點(diǎn)E是AD延長線上一點(diǎn),CE=CA,CF∥BD交AE于點(diǎn)F,若∠CAD=15°,
求證:EF=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( 。
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com