【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ ABCD中,點E、F在對角線BD上,且BE=DF.
(1)求證:AE=CF;
(2)求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“和諧分式”.如: ,則是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號);
①;②;③;④;
(2)將“和諧分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為:=_______(要寫出變形過程);
(3)應(yīng)用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空
如圖,已知AB∥CD,∠A=∠C,試說明∠B=∠D.
解:∵AB∥CD(已知)
∴∠B+∠C=180°( )
又∵∠A=∠C(已知)
∴∠B+________=180°(等量代換)
∴AD∥BC ( )
∴∠C+∠D=180°( )
又∵∠B+∠C=180°(已證)
∴∠B=∠D ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com