【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,直線AE是⊙O的切線,CD平分∠ACB,若∠CAE=21°,則∠BFC的度數(shù)為( )

A.66°B.111°C.114°D.119°

【答案】C

【解析】

根據(jù)直徑所對的圓周角是直角以及角平分線的定義求得∠ACD的度數(shù).根據(jù)切線的性質(zhì)可得出∠BAE的度數(shù),從而可得出∠BAC的度數(shù).最后在△ACF中,利用三角形的外角的性質(zhì)求解即可.

解:∵AB是圓的直徑,
∴∠ACB=90°,
又∵CD平分∠ACB
∴∠ACD=ACB=45°.
∵直線AE是⊙O的切線,AB是圓的直徑,
∴∠BAE=90°,即∠BAC+CAE=90°,
∴∠BAC=90°-CAE=90°-21°=69°,
∴∠BFC=BAC+ACD=69°+45°=114°.
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?

3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價格為200元時,每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價格在170~240元之間(含170元,240元)浮動時,每天入住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價格(元)的數(shù)據(jù)如下表:

(元)

190

200

210

220

()

65

60

55

50

1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點,并畫出圖象.

2)求關(guān)于的函數(shù)表達式、并寫出自變量的取值范圍.

3)設(shè)客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標(biāo)準(zhǔn)房的價格定為多少元時.客房的日營業(yè)額最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,點D為弧ACB的中點,過點D的切線與BC的延長線交于點E

1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);

2)求證:DEBC;

3)若OC=2CE=4,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距.甲從小區(qū)步行去學(xué)校,出發(fā)分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車,騎行若干米到達還車點后,立即步行走到學(xué)校.已知乙騎車的速度為/分,甲步行的速度比乙步行的速度每分鐘快.設(shè)甲步行的時間為(分),圖1中線段與折線分別表示甲、乙離小區(qū)的路程(米)與甲步行時間(分)的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離(米)與甲步行時間 (分)的函數(shù)關(guān)系的圖象(不完整),根據(jù)圖1和圖2中所給的信息,解答下列問題:

1)求甲步行的速度和乙出發(fā)時甲離開小區(qū)的路程;

2)求直線的解析式;

3)在圖2中,畫出當(dāng)時,關(guān)于的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22x+m=0有兩個不相等的實數(shù)根.

1)求實數(shù)m的最大整數(shù)值;

2)在(1)的條件下,方程的實數(shù)根是、,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2bxc過點A(3, 0)、點B(0, 3).點M(m, 0)在線段OA上(與點A、O不重合),過點Mx軸的垂線與線段AB交于點P,與拋物線交于點Q,聯(lián)結(jié)BQ

1)求拋物線表達式;

2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時,求PQ的長度;

3)當(dāng)PBQ為等腰三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,將ABO繞點A順時針旋轉(zhuǎn)到AB1C1的位置,點B、O分別落在點B1、C1處,點B1x軸上,再將AB1C1繞點B1順時針旋轉(zhuǎn)到A1B1C2的位置,點C2x軸上,將A1B1C2繞點C2順時針旋轉(zhuǎn)到A2B2C2的位置,點A2x軸上,依次進行下去若點A,0),B0,2),則點B2018的坐標(biāo)為( 。

A. 60480B. 6054,0C. 6048,2D. 6054,2

查看答案和解析>>

同步練習(xí)冊答案