【題目】中菲黃巖島爭(zhēng)端持續(xù),我海監(jiān)船加大黃巖島附近海域的巡航維權(quán)力度.如圖,OA⊥OB,OA=36海里,OB=12海里,黃巖島位于O點(diǎn),我國(guó)海監(jiān)船在點(diǎn)B處發(fā)現(xiàn)有一不明國(guó)籍的漁船,自A點(diǎn)出發(fā)沿著AO方向勻速駛向黃巖島所在地點(diǎn)O,我國(guó)海監(jiān)船立即從B處出發(fā)以相同的速度沿某直線去攔截這艘漁船,結(jié)果在點(diǎn)C處截住了漁船.
(1)請(qǐng)用直尺和圓規(guī)作出C處的位置;
(2)求我國(guó)海監(jiān)船行駛的航程BC的長(zhǎng).
【答案】見(jiàn)解析
【解析】試題分析:(1)由題意得,我海監(jiān)船與不明漁船行駛距離相等,即在OA上找到一點(diǎn),使其到A點(diǎn)與B點(diǎn)的距離相等,所以連接AB,作AB的垂直平分線即可.
(2)連接BC,利用第(1)題中作圖,可得BC=AC.在直角三角形BOC中,利用勾股定理列出方程122+(36﹣BC)2=BC2,解方程即可.
解:(1)作AB的垂直平分線與OA交于點(diǎn)C;
(2)連接BC,
由作圖可得:CD為AB的中垂線,則CB=CA.
由題意可得:OC=36﹣CA=36﹣CB.
∵OA⊥OB,
∴在Rt△BOC中,BO2+OC2=BC2,
即:122+(36﹣BC)2=BC2,
解得BC=20.
答:我國(guó)海監(jiān)船行駛的航程BC的長(zhǎng)為20海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中標(biāo)明了小英家附近的一些地方,已知游樂(lè)場(chǎng)的坐標(biāo)為(3,2).
(1)在圖中建立平面直角坐標(biāo)系,并寫(xiě)出汽車(chē)站和消防站的坐標(biāo);
(2)某星期日早晨,小英同學(xué)從家里出發(fā),沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路線轉(zhuǎn)了一下,又回到家里,寫(xiě)出路上她經(jīng)過(guò)的地方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩艘輪船同時(shí)從港口O出發(fā),甲輪船以20海里/時(shí)的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開(kāi)港口O兩小時(shí)后,兩艘輪船相距50海里,求乙輪船平均每小時(shí)航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格(邊長(zhǎng)為1的小正方形組成的網(wǎng)格紙,正方形的頂點(diǎn)稱(chēng)為格點(diǎn))是我們?cè)诔踔须A段常用的工具,利用它可以解決很多問(wèn)題.
(1)如圖①中,△ABC是格點(diǎn)三角形(三個(gè)頂點(diǎn)為格點(diǎn)),則它的面積為 ;
(2)如圖②,在4×4網(wǎng)格中作出以A為頂點(diǎn),且面積最大的格點(diǎn)正方形(四個(gè)頂點(diǎn)均為格點(diǎn));
(3)人們發(fā)現(xiàn),記格點(diǎn)多邊形(頂點(diǎn)均為格點(diǎn))內(nèi)的格點(diǎn)數(shù)為a,邊界上的格點(diǎn)數(shù)為b,則格點(diǎn)多邊形的面積可表示為S=ma+nb-1,其中m,n為常數(shù).試確定m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到點(diǎn) A 的距離是點(diǎn) C 到點(diǎn) B 的距離的 2倍,則稱(chēng)點(diǎn) C 是(A,B)的奇異點(diǎn),例如圖 1 中,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn)B 表示的數(shù)為 2,表示 1 的點(diǎn) C 到點(diǎn) A 的距離為 2,到點(diǎn) B 的距離為 1,則點(diǎn)C 是(A,B)的奇異點(diǎn),但不是(B,A)的奇異點(diǎn).
(1)在圖 1 中,直接說(shuō)出點(diǎn) D 是(A,B)還是(B,C)的奇異點(diǎn);
(2)如圖 2,若數(shù)軸上 M、N 兩點(diǎn)表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點(diǎn) K 在 M、N 兩點(diǎn)之間,請(qǐng)求出 K 點(diǎn)表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點(diǎn) P 從點(diǎn) B 出發(fā),向左運(yùn)動(dòng).
①若點(diǎn) P 到達(dá)點(diǎn) A 停止,則當(dāng)點(diǎn) P 表示的數(shù)為多少時(shí),P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)?
②若點(diǎn) P 到達(dá)點(diǎn) A 后繼續(xù)向左運(yùn)動(dòng),是否存在使得 P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí) PB 的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說(shuō)明理由;
(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道1+2+3+…+=,則1+2+3+…+10= ___________ .
[問(wèn)題提出] 那么 的結(jié)果等于多少呢?
[閱讀理解] 在圖1所示的三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12 ;第2行兩個(gè)圓圈中數(shù)的和為2+2,即22;......;第n行n個(gè)圓圈中數(shù)的和為n+n+n即 n2;這樣,該三角形數(shù)陣中共有____ 個(gè)圓圈,所有圓圈中數(shù)的和可表示為_________________ .
圖1
[規(guī)律探究] 將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n-1行的第一個(gè)圓圈中的數(shù)分別為n-1,2,n)發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中的數(shù)的和均為______________.由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為:
3( )=_________________.因此, =__________.
圖2
[問(wèn)題解決]
(1).根據(jù)以上規(guī)律可得 __________________.
(2).試計(jì)算 ,請(qǐng)寫(xiě)出計(jì)算步驟.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,A,E三點(diǎn)都在直線m上,∠BDA=∠AEC=∠BAC,BD=3,CE=6,則DE的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵的開(kāi)通,給N市市民出行帶來(lái)了極大的方便,“元旦”期間,甲、乙兩人應(yīng)邀到A市的藝術(shù)館參加演出,甲乘私家車(chē)從N市出發(fā)1小時(shí)后,乙乘坐高鐵從N市出發(fā),先到A市火車(chē)站,然后再轉(zhuǎn)乘出租車(chē)到A市的藝術(shù)館(換車(chē)時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)A市的藝術(shù)館,他們離開(kāi)N市的距離y(千米)與乘車(chē)時(shí)間x(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)高鐵的平均速度是每小時(shí)多少千米?
(2)分別求甲、乙(乘坐高鐵時(shí))兩人離開(kāi)N市的距離y與乘車(chē)時(shí)間x的函數(shù)關(guān)系式;
(3)若甲要提前30分鐘到達(dá)藝術(shù)館,那么私家車(chē)的速度必須達(dá)到多少千米/小時(shí)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com