【題目】已知:等腰三角形OAB在直角坐標(biāo)系中的位置如圖,點A的坐標(biāo)為(-3,3),點B的坐標(biāo)為(﹣6,0).
(1)若三角形OAB關(guān)于y軸的軸對稱圖形是三角形OA′B′,請直接寫出A、B的對稱點A′、B′的坐標(biāo);
(2)若將三角形OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù)y=的圖象上,求a的值;
(3)若三角形OAB繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<90).
①當(dāng)α=30°時點B恰好落在反比例函數(shù)y=的圖象上,求k的值;
②問點A、B能否同時落在①中的反比例函數(shù)的圖象上,若能,求出α的值;若不能,請說明理由.
【答案】(1)A'(,3),B'(6,0) (2)a=5 (3)①9②能
【解析】
(1)若△OAB、△OA′B′關(guān)于y軸對稱,那么A、A′以及B、B′都關(guān)于y軸對稱,可據(jù)此得到A′、B′的坐標(biāo);(2)根據(jù)點A坐標(biāo)為(,3),將△OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù)的圖象上,則平移以后點的縱坐標(biāo)是3,把y=3代入解析式就可以得到A點平移后的點的橫坐標(biāo),得到a的值;(3)△OAB繞點O按逆時針方向旋轉(zhuǎn)30度,就可以求出旋轉(zhuǎn)后點的坐標(biāo),代入反比例函數(shù)的解析式,就可以求出k的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的邊OC=2,將過點B的直線y=x﹣3與x軸交于點E.
(1)求點B的坐標(biāo);
(2)連結(jié)CE,求線段CE的長;
(3)若點P在線段CB上且OP=,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(不與B、C兩點重合),過點F的反比例函數(shù)y=(k>0)圖象與AC邊交于點E.
(1)請用k的表示點E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=60°,點E,F(xiàn)分別在AB,AC上,把∠A沿著EF對折,使點A落在BC上的點D處.
(1)用尺規(guī)作圖的方法,在圖中找出點E,F(xiàn)的位置,并連接DE,DF(保留作圖痕跡,不要求寫作法);
(2)若ED⊥BC,求證:四邊形AEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以正方形的邊為直徑作半圓,過點作直線切半圓于點,交邊于點,若的周長為,則直角梯形周長為( )
A. 12 B. 13 C. 14 D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AB∥CD,AD//BC,點E,F在對角線AC上,且AE=CF,請你分別以E,F為一端點,和圖中已標(biāo)字母的某點連成兩條相等的新線段(只需證明一組線段相等即可).
(1)連接 ;
(2)結(jié)論: = ;
(3)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com