菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.∠AOC=45°,OC=,則點(diǎn)B的坐標(biāo)為( )

A.(,1)
B.(1,
C.(+1,1)
D.(1,+1)
【答案】分析:根據(jù)菱形的性質(zhì),作CD⊥x軸,先求C點(diǎn)坐標(biāo),然后求得點(diǎn)B的坐標(biāo).
解答:解:作CD⊥x軸于點(diǎn)D,
∵四邊形OABC是菱形,OC=
∴OA=OC=,
又∵∠AOC=45°
∴△OCD為等腰直角三角形,
∵OC=,
∴OD=CD=OC×sin∠COD=OC×sin45°=1,
則點(diǎn)C的坐標(biāo)為(1,1),
又∵BC=OA=,
∴B的橫坐標(biāo)為OD+BC=1+,B的縱坐標(biāo)為CD=1,
則點(diǎn)B的坐標(biāo)為(+1,1).
故選C.
點(diǎn)評(píng):本題綜合考查了圖形的性質(zhì)和坐標(biāo)的確定,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.∠AOC=45°,OC=
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•瑤海區(qū)一模)每個(gè)小方格是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,菱形OABC在平面直角坐標(biāo)系的位置如圖所示.
(1)以O(shè)為位似中心,在第一象限內(nèi)將菱形OABC放大為原來(lái)的2倍得到菱形OA1B1C1,請(qǐng)畫(huà)出菱形OA1B1C1,并直接寫(xiě)出點(diǎn)B1的坐標(biāo);
(2)將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°菱形OA2B2C2,請(qǐng)畫(huà)出菱形OA2B2C2,并求出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•道外區(qū)二模)菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,OA=5,cosB=
3
5
,直線AC交y軸于點(diǎn)D,動(dòng)點(diǎn)P從A出發(fā),以每秒2個(gè)單位的速度沿折線A-B-C向終點(diǎn)C勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q從D點(diǎn)出發(fā),以每
5
個(gè)單位的速度沿DA向終點(diǎn)A勻速運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求點(diǎn)C的坐標(biāo);
(2)求△PCQ的面積S(點(diǎn)P在BC上)與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(3)當(dāng)t=
5
2
時(shí),直線PQ交y軸于F點(diǎn),求
FD
OD
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OC=
2
,則點(diǎn)A的坐標(biāo)為
2
,0)
2
,0)
;點(diǎn)B的坐標(biāo)為
2
+1,1)
2
+1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,,則點(diǎn)B的坐

標(biāo)為         

 


查看答案和解析>>

同步練習(xí)冊(cè)答案