【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點(diǎn)E,連接CE,過(guò)點(diǎn)CCFBAPQ于點(diǎn)F,連接AF.

(1)求證:四邊形AECF是菱形;

(2)若AD=3,AE=5,則求菱形AECF的面積.

【答案】(1)見解析;(2)菱形AECF的面積為24.

【解析】分析:(1)首先利用AAS證明,進(jìn)而得到,于是得打四邊形是平行四邊形,再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形即可得到結(jié)論;
(2)首先利用勾股定理求出的長(zhǎng),再利用對(duì)角線乘積的一半求出菱形的面積.

詳解:證明:(1)CFAB,

∴∠DCF=DAE,

PQ垂直平分AC,

CD=AD

CDFAED

CDFAED,

AE=CF,

∴四邊形AECF是平行四邊形,

PQ垂平分AC,

AE=CE,

∴四邊形AECF是菱形;

(2)∵四邊形AECF是菱形,

ADE是直角三角形,

AD=3,AE=5,

DE=4,

AC=2AD=6,EF=2DE=8,

∴菱形AECF的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對(duì)角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以ABAO2為鄰邊作平行四邊形ABC2O2,,依此類推,則平行四邊形ABC5O5的面積為(  )

A. 1cm2B. 2cm2C. cm2D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,邊長(zhǎng)為5的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)P,頂點(diǎn)Ax軸正半軸上運(yùn)動(dòng),頂點(diǎn)By軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C. D都在第一象限。

(1)當(dāng)點(diǎn)A坐標(biāo)為(4,0)時(shí),求點(diǎn)D的坐標(biāo);

(2)求證:OP平分∠AOB;

(3)直接寫出OP長(zhǎng)的取值范圍(不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(﹣1,)及原點(diǎn),交x軸于另一點(diǎn)C(2,0),點(diǎn)D(0,m)是y軸正半軸上一動(dòng)點(diǎn),直線AD交拋物線于另一點(diǎn)B.

(1)求拋物線的解析式;

(2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

(3)如圖2,作BEx軸于E,連接AC、DE,當(dāng)D點(diǎn)運(yùn)動(dòng)變化時(shí),AC、DE的位置關(guān)系是否變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下四個(gè)命題:

反比例函數(shù)y=,當(dāng)x>0時(shí),yx的增大而增大;

拋物線y=x2﹣2x+2與兩坐標(biāo)軸無(wú)交點(diǎn);

平分弦的直徑垂直于弦,且平分弦所對(duì)的弧;

有一個(gè)角相等的兩個(gè)等腰三角形相似.

其中正確命題的個(gè)數(shù)為( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義運(yùn)算aba(1b),下面給出了關(guān)于這種運(yùn)算的四個(gè)結(jié)論:

2(2)6 abba

ab0,則(aa)+(bb)2ab ab0,則a0

其中正確結(jié)論的序號(hào)是 (填上你認(rèn)為所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,現(xiàn)有兩條鄉(xiāng)村公路AB、BCAB長(zhǎng)為1200米,BC長(zhǎng)為1600,一個(gè)人騎摩托車從A處以20m/s的速度勻速沿公路AB、BCC處行駛;另一人騎自行車從B處以5m/s的速度從BC行駛,并且兩人同時(shí)出發(fā).

1)求經(jīng)過(guò)多少秒摩托車追上自行車?

2)求兩人均在行駛途中時(shí),經(jīng)過(guò)多少秒兩人在行進(jìn)路線上相距150米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式x﹣1.

(1)當(dāng)m=1時(shí),求該不等式的解集;

(2)m取何值時(shí),該不等式有解,并求出解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案