【題目】已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B(3,2),點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)O對(duì)稱,BA⊥x軸于點(diǎn)A,CD⊥x軸于點(diǎn)D.
(1)求這個(gè)反比函數(shù)的表達(dá)式;
(2)求△ACD的面積.
【答案】(1 );(2)6.
【解析】
試題(1)將B點(diǎn)坐標(biāo)代入y=中,求得k值,即可得反比例函數(shù)的解析式;(2)分別求得點(diǎn)C、點(diǎn)A、點(diǎn)D的坐標(biāo),即可求得△ACD的面積.
試題解析:
(1)將B點(diǎn)坐標(biāo)代入y=中,得=2,解得k=6,
∴反比例函數(shù)的解析式為y=.
(2)∵點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)O對(duì)稱,
∴C點(diǎn)坐標(biāo)為(-3,-2).
∵BA⊥x軸,CD⊥x軸,
∴A點(diǎn)坐標(biāo)為(3,0),D點(diǎn)坐標(biāo)為(-3,0).
∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段EF,BE,FD之間的數(shù)量關(guān)系.
小明同學(xué)探究的方法是:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,
他的結(jié)論是 (直接寫結(jié)論,不需證明);
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的二分之一,上述結(jié)論是否仍然成立,并說明理由.
(3)如圖3,四邊形ABCD是邊長(zhǎng)為5的正方形,∠EBF=45°,直接寫出三角形DEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形的紙片ABCD中,AD=3cm,AB=4cm,把該紙片沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F.
(1)圖中有等腰三角形嗎?說明理由.
(2)求重疊部分(即△ACF)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,E為BC延長(zhǎng)線上一點(diǎn).
(1)請(qǐng)你添加平行線證明:∠ACE=∠ABC+∠A.
(2)如圖2,若點(diǎn)D是線段AC上一點(diǎn),且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度數(shù).
(3)如圖3,已知E為BC延長(zhǎng)線上一點(diǎn),D是線段AC上一點(diǎn),連接DE,若∠ABC的平分線與∠ADE的平分線相交于點(diǎn)P,請(qǐng)你判斷∠P、∠A、∠E的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù):
﹣2,4,﹣8,16,﹣32,64,…; ①
﹣1,2,﹣4,8,﹣16,32,…; ②
0,6,﹣6,18,﹣30,66,…;③
(1)第①行數(shù)中的第n個(gè)數(shù)為 (用含n的式子表示)
(2)取每行數(shù)的第n個(gè)數(shù),這三個(gè)數(shù)的和能否等于﹣318?如果能,求出n的值;如果不能,請(qǐng)說明理由.
(3)如圖,用一個(gè)矩形方框框住六個(gè)數(shù),左右移動(dòng)方框,若方框中的六個(gè)數(shù)之和為﹣156,求方框中左上角的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得四邊形是( )
A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和均是等邊三角形,、分別與、交于點(diǎn)、,且、、在同一直線上,有如下結(jié)論:①≌;②;③;④,其中正確結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn).連接AO并延長(zhǎng)交PB的延長(zhǎng)線于點(diǎn)C,連接PO交⊙O于點(diǎn)D.
(1)求證:PO平分∠APC;
(2)連接BD,若∠C=30°,求證:DB∥AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com