【題目】如圖,點O是線段AB上的一點,OA=OC,OD平分∠AOC交AC于點D,OF平分∠COB,CF⊥OF于點F.
(1)求證:四邊形CDOF是矩形;
(2)當∠AOC多少度時,四邊形CDOF是正方形?并說明理由.
【答案】
(1)證明:∵OD平分∠AOC,OF平分∠COB(已知),
∴∠AOC=2∠COD,∠COB=2∠COF。
∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°。∴∠COD+∠COF=90°。
∴∠DOF=90°。
∵OA=OC,OD平分∠AOC(已知)。
∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性質)!唷螩DO=90°。
∵CF⊥OF,∴∠CFO=90°。
∴四邊形CDOF是矩形。
(2)解:當∠AOC=90°時,四邊形CDOF是正方形。理由如下:
∵∠AOC=90°,AD=DC,∴OD=DC。
又由(1)知四邊形CDOF是矩形,則四邊形CDOF是正方形。
因此,當∠AOC=90°時,四邊形CDOF是正方形。
【解析】(1)根據角平分線的定義得到∠DOF=90°,根據等腰三角形的性質三線合一,得到∠CDO=90°,再由CF⊥OF,得到四邊形CDOF是矩形;(2)根據正方形的判定方法有一組臨邊相等的矩形是正方形,當∠AOC=90°時OD=DC,得到四邊形CDOF是正方形.
【考點精析】本題主要考查了正方形的判定方法的相關知識點,需要掌握先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統計圖.
(1)這次調查的市民人數為________人,m=________,n=________;
(2)補全條形統計圖;
(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com