【題目】如圖,四邊形ABCD中,AC平分∠BAD, ACD=ABC=90°,E、F分別為AC、CD的中點,∠D=62°,則∠BEF的度數(shù)為_______

【答案】84°

【解析】

根據(jù)直角三角形的性質(zhì)得到∠DAC=90°-D,根據(jù)角平分線的定義、三角形的外角的性質(zhì)得到∠CEB=180°-2D ,根據(jù)三角形中位線定理、平行線的性質(zhì)得到∠CEF=CAD=90°-D ,再根據(jù)∠FEB=FEC+CEB求解即可.

解析:∵∠ACD=90°,D=62°,

DAC=90°-D,

AC平分∠BAD,

∴∠DAC=BAC=90°-D ,

又∵∠ABC=90°,EAC的中點,

BE=AE=EC,

∴∠EAB= EBA=90°-D ,∠CEB=180°-2D ,

E、F分別為AC、CD的中點

EF // AD

∴∠CEF=CAD=90°-D ,

∴∠BEF=180°-2D +90°- D =270°-3D=270°-362°=84°

故答案為:84°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi),如圖,在平行四邊形中, , ,點邊上任意一點,連接,將繞點逆時針旋轉(zhuǎn)得到線段

)當(dāng)時,求的大。

)當(dāng)時,求點與點間的距離(結(jié)果保留根號).

)若點恰好落在平行四邊形的邊所在的條直線上,直接寫出旋轉(zhuǎn)到所掃過的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分有甲、乙兩個不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3、7、9;乙盒子中裝有4張卡片,卡片上分別寫著2、4、6、8;盒子外有一張寫著5的卡片所有卡片的形狀、大小都完全相同現(xiàn)隨機從甲、乙兩個盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標(biāo)明的數(shù)量分別作為一條線段的長度

1請用樹狀圖或列表的方求這三條線段能組成三角形的概率;

2求這三條線段能組成直角三角形的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)完了平行四邊形這個章節(jié)后,想對“四邊形的不穩(wěn)定性”和“四邊形的判定”有更好的理解,做了如下的探究:他將8個木棍和一些釘子組成了一個正方形和平行四邊形(如圖1),且,在一條直線上,點落在邊上.經(jīng)小明測量,發(fā)現(xiàn)此時、、三個點在一條直線上,,

1)求的長度;

2)設(shè)的長度為,________(用含的代數(shù)式表示);

3)小明接著探究,在保證,位置不變的前提條件下,從點向右推動正方形,直到四邊形剛好變?yōu)榫匦螘r停止推動(如圖2).若此時,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點,以AE為邊在直線MN的上方作正方形AEFG.

(1)連接GD,求證:△ADG≌△ABE;

(2)連接FC,觀察并猜測∠FCN的度數(shù),并說明理由;

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當(dāng)點EBC運動時,∠FCN的大小是否總保持不變?若∠FCN的大小不變,請用含a、b的代數(shù)式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=90°,點AB分別在OM、ON上運動(不與點O重合).

(1)如圖①,BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交于點D.

①若∠BAO=60°,則∠D的大小為 度,

②猜想:∠D的度數(shù)是否隨AB的移動發(fā)生變化?請說明理由.

(2)如圖②,若∠ABC=ABN, BAD=BAO,則∠D的大小為 度,若∠ABC=ABN, BAD=BAO,則∠D的大小為 度(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎電動車從A地到B地,乙騎自行車從B地到A地,兩人同時出發(fā),設(shè)乙騎自行車的時間為th),兩人之間的距離為skm),圖中的折線表示st之間的關(guān)系,根據(jù)圖象回答下列問題.

1AB兩地之間的距離為   km;

2)求甲出發(fā)多長時間與乙相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,BC6,AB、AC的垂直平分線分別交邊BC于點MN,若MN2,則△AMN的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中的對角線ACBD相交于O,EF過點O,與AD,BC分別相交于點EF,若AB=4,BC=5OE=1.5,則四邊形EFCD的周長為(

A.10B.11C.12D.13

查看答案和解析>>

同步練習(xí)冊答案