【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過(guò)二次函數(shù)y=﹣x2+4x圖象上的點(diǎn)A33)作x軸的垂線交x軸于點(diǎn)B

1)如圖1,P為線段OA上方拋物線上的一點(diǎn),在x軸上取點(diǎn)C1,0),點(diǎn)M、Ny軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M在點(diǎn)N的上方且MN1.連接AC,當(dāng)四邊形PACO的面積最大時(shí),求PM+MNNO的最小值.

2)如圖2,點(diǎn)Q3,1)在線段AB上,作射線CQ,將AQC沿直線AB翻折,C點(diǎn)的對(duì)應(yīng)點(diǎn)為C',將AQC'沿射線CQ平移3個(gè)單位得A'Q'C,在射線CQ上取一點(diǎn)M,使得以A'、M、C為頂點(diǎn)的三角形是等腰三角形,求M點(diǎn)的坐標(biāo).

【答案】1)最小值為;(2)點(diǎn)M坐標(biāo)為(7,3),(,),(,),(136),(10,

【解析】

1)把四邊形PACO沿OA分成OAPOAC,由于OAC三邊確定,面積為定值,故OAP面積最大時(shí)四邊形面積也最大.過(guò)點(diǎn)Px軸垂線交OAD,設(shè)點(diǎn)P橫坐標(biāo)為t,則能用t表示PD的長(zhǎng),進(jìn)而得到OAP關(guān)于t的二次函數(shù)關(guān)系式,用公式法可求得t時(shí)OAP面積最大,即求得此時(shí)點(diǎn)P坐標(biāo).把點(diǎn)P向下平移1個(gè)單位得P',易證四邊形MNP'P是平行四邊形,所以PMP'N.過(guò)點(diǎn)O作經(jīng)過(guò)第二、四象限的直線l,并使直線lx軸夾角為60°,過(guò)點(diǎn)NNG⊥直線l于點(diǎn)G,則由30°角所對(duì)直角邊等于斜邊一半可知NGNO.所以PM+MNNO可轉(zhuǎn)化為P'N+NG+1,易得當(dāng)點(diǎn)P'N、G在同一直線上最。PD延長(zhǎng)交直線l于點(diǎn)F,構(gòu)造特殊RtP'FGRtOEF,利用點(diǎn)P坐標(biāo)和30°、60°的三角函數(shù)即可求得P'G的長(zhǎng).

2)由點(diǎn)B、CQ的坐標(biāo)求CQ的長(zhǎng)和點(diǎn)C'坐標(biāo);過(guò)點(diǎn)Q'x軸的垂線段Q'H,易證CBQ∽△CHQ',故有,求得CHHQ'的長(zhǎng)即求得點(diǎn)Q'坐標(biāo),進(jìn)而得到向右向上平移的距離,求得點(diǎn)A'、C'的坐標(biāo).求直線CQ解析式,設(shè)CQ上的點(diǎn)M橫坐標(biāo)為m,用兩點(diǎn)間距離公式可得用m表示A'MC'M的長(zhǎng).因?yàn)?/span>A'MC'是等腰三角形,分三種情況討論,得到關(guān)于m的方程,求解即求得相應(yīng)的m的值,進(jìn)而得點(diǎn)M坐標(biāo).

1)如圖1,過(guò)點(diǎn)O作直線l,使直線l經(jīng)過(guò)第二、四象限且與x軸夾角為60°;

過(guò)點(diǎn)PPFx軸于點(diǎn)E,交OA于點(diǎn)D,交直線l于點(diǎn)F;在PF上截取PP'1;過(guò)點(diǎn)NNG⊥直線l于點(diǎn)G

A3,3),ABx軸于點(diǎn)B

∴直線OA解析式為yx,OBAB3

C1,0

SAOCOCAB1×3,是定值

設(shè)Pt,﹣t2+4t)(0t3

Dt,t

PD=﹣t2+4tt=﹣t2+3t

SOAPSOPD+SAPDPDOEPDBEPDOBt23t

t時(shí),SOAP最大

此時(shí),S四邊形PACOSAOC+SOAP最大

yP=﹣(2+3

P,

P'EPEPP'1,即P'

∵點(diǎn)M、Ny軸上且MN1

PP'MN,PP'MN

∴四邊形MNP'P是平行四邊形

PMP'N

∵∠NGO90°,∠NOG90°60°30°

RtONG中,NGNO

PM+MNNOP'N+NG+1

∴當(dāng)點(diǎn)P'、N、G在同一直線上,即P'G⊥直線l時(shí),PM+MNNOP'G+1最小

OE,∠EOF60°,∠OEF90°

RtOEF中,∠OFE30°,tanEOF

EFOE

P'FP'E+EF

RtP'GF中,P'GP'F

P'G+11

PM+MNNO的最小值為

2)延長(zhǎng)A'Q'x軸于點(diǎn)H

C1,0),Q3,1),QBx軸于點(diǎn)B

CB2BQ1

CQ

∵△AQC沿直線AB翻折得AQC'

B3,0)是CC'的中點(diǎn)

C'5,0

∵平移距離QQ'3

CQ'CQ+QQ'4

QBQ'H

∴△CBQ∽△CHQ'

CH4CB8,yQ'HQ'4BQ4

xQ'OC+CH1+89

Q'9,4

∴點(diǎn)Q3,1)向右平移6個(gè)單位,向上平移3個(gè)單位得到點(diǎn)Q'9,4

A'9,6),C'11,3

A'C'

設(shè)直線CQ解析式為ykx+b

解得:

∴直線CQyx

設(shè)射線CQ上的點(diǎn)Mmm)(m1

A'M2=(9m2+6m2=(9m2+m2

C'M2=(11m2+3m2=(11m2+m2

∵△A'MC'是等腰三角形

①若A'MA'C',則(9m2+m213

解得:m17,m2

M7,3)或(,

②若C'MA'C',則(11m2+m213

解得:m1m213

M,)或(136

③若A'MC'M,則(9m2+m2=(11m2+m2

解得:m10

M10,

綜上所述,點(diǎn)M坐標(biāo)為(73),(,),(,),(136),(10,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),拋物線yax2+x+cx軸交于AB兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,0),與y軸交于點(diǎn)C,直線ykx+2經(jīng)過(guò)A、C兩點(diǎn).

1)如圖1,求ac的值;

2)如圖2,點(diǎn)P為拋物線yax2+x+c在第一象限的圖象上一點(diǎn),連接AP、CP,設(shè)點(diǎn)P的橫坐標(biāo)為t,△ACP的面積為S,求St的函數(shù)解析式,并直接寫(xiě)出自變量t的取值范圍;

3)在(2)的條件下,點(diǎn)D為線段AC上一點(diǎn),直線OD與直線BC交于點(diǎn)E,點(diǎn)F是直線OD上一點(diǎn),連接BP、BF、PFPD,BFBP,∠FBP90°,若OE,求直線PD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC5BC6,ADBC,EF分別為AC、AD上兩動(dòng)點(diǎn),連接CF、EF,則CFEF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1, 0)、B(4,0)、M(53).動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿x軸以每秒1個(gè)單位的速度向右移動(dòng),過(guò)點(diǎn)P的直線ly= -x+b也隨之移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

1)當(dāng)t=1時(shí),求直線l的解析式.

2)若直線l與線段BM有公共點(diǎn),求t的取值范圍.

3)當(dāng)點(diǎn)M關(guān)于直線l的對(duì)稱(chēng)點(diǎn)落在坐標(biāo)軸上時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考將近,同學(xué)們需要花更多的時(shí)間來(lái)進(jìn)行自我反思和總結(jié),消化白天的學(xué)習(xí)內(nèi)容,提高學(xué)習(xí)效率.因此,每個(gè)班都在積極地進(jìn)行自我調(diào)整.我校A班和B班的同學(xué)也積極響應(yīng)號(hào)召,調(diào)查了本班的自習(xí)情況以供老師參考.

A班同學(xué)在班級(jí)抽樣調(diào)查中,調(diào)查了十名同學(xué)的學(xué)習(xí)情況,將這十名同學(xué)在一周內(nèi)每天用于自主復(fù)習(xí)的總時(shí)間四舍五入后,分別記錄如下:(單位:分)

18 11 22 25 25 18 27 25 22 27

B班的同學(xué)采取的普查方式,讓每位同學(xué)自己寫(xiě)出平均每天的自主復(fù)習(xí)時(shí)間,將數(shù)據(jù)收集整理后得到以下數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

22

23

30

30

59.7

B班的同學(xué)還將自主復(fù)習(xí)時(shí)間分為四大類(lèi):第一類(lèi)為時(shí)間小于10分鐘以下;第二類(lèi)為時(shí)間大于或等于10分鐘且小于20分鐘;第三類(lèi)為時(shí)間大于或等于20分鐘且小于30分鐘;第四類(lèi)為時(shí)間大于或等于30分鐘,并得到如下的扇形圖.

1)在扇形圖中,第一類(lèi)所對(duì)的圓心角度數(shù)為   

2)寫(xiě)出A班被調(diào)查同學(xué)的以下特征數(shù).

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

22

25

16

3)從上面的數(shù)據(jù),我們可以得到   班的自主復(fù)習(xí)情況要好一些.其理由為(至少兩條):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄭州大學(xué)(ZhengzhouUniversity),簡(jiǎn)稱(chēng)“鄭大”,是中華人民共和國(guó)教育部與河南省人民政府共建的全國(guó)重點(diǎn)大學(xué),首批“雙一流”世界一流大學(xué)、“211工程”.某學(xué)校興趣小組3人來(lái)到鄭州大學(xué)門(mén)口進(jìn)行測(cè)量,如圖,在大樓AC的正前方有一個(gè)舞臺(tái),舞臺(tái)前的斜坡DE4米,坡角∠DEB41°,小紅在斜坡下的點(diǎn)E處測(cè)得樓頂A的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂A的仰角為45°,其中點(diǎn)B,C,E在同一直線上求大樓AC的高度.(結(jié)果精確到整數(shù).參考數(shù)據(jù):≈1.73,sin41°≈0.6,cos41°≈0.75tan41°≈0.87)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級(jí)準(zhǔn)備開(kāi)設(shè)神奇魔方魅力數(shù)獨(dú)、數(shù)學(xué)故事、趣題巧解四門(mén)選修課(每位學(xué)生必須且只選其中一門(mén))

1)學(xué)校對(duì)七年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,得到如圖所示的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,請(qǐng)估計(jì)該校七年級(jí)720名學(xué)生選數(shù)學(xué)故事的人數(shù).

2)學(xué)校將數(shù)學(xué)故事的學(xué)生分成人數(shù)相等的A,BC三個(gè)班,小聰、小慧都選擇了數(shù)學(xué)故事.已知小聰不在A班,求他與小慧被分到同一個(gè)班的概率.(要求列表或畫(huà)樹(shù)狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊的放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長(zhǎng)和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)EAD的中點(diǎn),BE的延長(zhǎng)線與CD的延長(zhǎng)線交于點(diǎn)F

(1)求證:ABE≌△DFE;

(2)試連結(jié)BDAF,判斷四邊形ABDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案