如圖,
==,已知AB是⊙O的直徑,∠BOC=40°,那么∠AOE=40
°60
°80
°120
°科目:初中數(shù)學(xué) 來源:新教材新學(xué)案 數(shù)學(xué) 七年級下冊 題型:022
如圖,∠BAM=75°,∠BGE=75°,∠CHG=105°,可推出AM∥EF,AB∥CD.試完成下列填空:
解:因為∠BAM=75°,∠BGE=75°(已知)
所以∠BAM=∠BGE( )
所以AM∥EF( )
又因為∠AGH=∠BGE( )
所以∠AGH=75°( )
所以∠AGH+∠CHG=75°+105°=180°
所以________∥________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.
原問題:如圖1,已知△ABC,∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學(xué)經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:
1.寫出原問題中DF與EF的數(shù)量關(guān)系
2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中
得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年九年級下學(xué)期第一次月考數(shù)學(xué)卷 題型:解答題
如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4㎝,DC=6㎝,試求AD的長. 小萍同學(xué)靈活運用軸對稱知識,將圖形進行翻折變換,巧妙地解答了此題。請按照小萍的思路,探究并解答下列問題:
【小題1】分別以AB、AC所在的直線為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點分別為點E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
【小題2】設(shè)AD=x㎝,聯(lián)系(1)的結(jié)論,試求出AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇蘇州八年級上期中檢測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖: 在梯形ABCD中,AB∥DC,AD=DC=CB,CE⊥AD,交AD的延長線于E,CF⊥AB,垂足為F.
(1) 寫出圖中相等的線段; (已知的相等線段除外)
(2) 若AD=5,CF=4,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com