【題目】如圖,在以O為原點的直角坐標系中,點A,C分別在x軸、y軸的正半軸上,點B在第一象限內,四邊形OABC是矩形,反比例函數(shù)yx>0)與AB相交于點D,與BC相交于點E,若BE=4CE,四邊形ODBE的面積是8,則k_____

【答案】2

【解析】

利用反比例函數(shù)圖象上點的坐標特征,設E(a,),利用BE=4CE得到B(5a,),根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義,利用四邊形ODBE的面積=S矩形ABCO-SOCE-SAOD得到5a-k-k=8,然后解方程即可.

E(a,),

BE=4CE,

B(5a,),

∵四邊形ODBE的面積=S矩形ABCO-SOCE-SAOD,

5a-k-k=8,

解得k=2.

故答案為2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進A、B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元;花50萬元購進A型汽車的數(shù)量與花40萬元購進B型汽車的數(shù)量相同.

1)求A、B兩種型號汽車的進貨單價;

2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數(shù)關系yA=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數(shù)關系yB=﹣x+14,A型汽車的售價比B型汽車的售價高2萬元/臺.問A、B兩種型號的汽車售價各為多少時,每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,DC=8,現(xiàn)將四邊形BEGC沿折痕EG(G,E分別在DCAB邊上)折疊,其頂點BC分別落在邊AD上和邊DC的上部,其對應點設為F,N點,且FNDCM

特例體驗:

(1)FD=AF時,FDM的周長是多少?

類比探究:

(2)FD≠AF≠0時,FDM的周長會發(fā)生變化嗎?請證明你的猜想.

拓展延伸:

(3)同樣在FD≠AF≠0的條件下,設AFx,被折起部分(即:四邊形FEGN)的面積為S,試用含x的代數(shù)式表示S,并問:當x為何值時,S=26?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市場將進貨價為40/件的商品按60/件售出,每星期可賣出300件.市場調查反映:如調整價格,每漲價1/件,每星期該商品要少賣出10件.

1)請寫出該商場每月賣出該商品所獲得的利潤y(元)與該商品每件漲價x(元)間的函數(shù)關系式;

2)每月該商場銷售該種商品獲利能否達到6300元?請說明理由;

3)請分析并回答每件售價在什么范圍內,該商場獲得的月利潤不低于6160元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,我市某中學決定根據(jù)學生的興趣愛好組建課外興趣小組,因此學校隨機抽取了部分同學的興趣愛好進行調查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

(1)學校這次調查共抽取了   名學生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,戲曲所在扇形的圓心角度數(shù)為   ;

(4)設該校共有學生2000名,請你估計該校有多少名學生喜歡書法?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.

(1)求每個排球和籃球的價格:

(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設排球的個數(shù)為m,總費用為y元.

①求y關于m的函數(shù)關系式,并求m可取的所有值;

②在學校按怎樣的方案購買時,費用最低?最低費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)過點A(3,4),直線ACx軸交于點C(6,0),過點Cx軸的垂線BC交反比例函數(shù)圖象于點B.

(1)求k的值與B點的坐標;

(2)在平面內有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有D點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.

(1)求拋物線的解析式;

(2)求點D的坐標;

(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的內接三角形,過點的切線,交的延長線于,且

1)求證:

2)若,,求的長度.

查看答案和解析>>

同步練習冊答案