【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC.
(1)如圖1,填空∠B= °,∠C= °;
(2)若M為線段BC上的點,過M作直線MH⊥AD于H,分別交直線AB、AC與點N、E,如圖2
①求證:△ANE是等腰三角形;
②試寫出線段BN、CE、CD之間的數(shù)量關系,并加以證明.
【答案】(1)36,72;(2) ①詳見解析;②CD=BN+CE,理由見解析.
【解析】
試題(1)BA=BC,且DB=DA=AC可得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形內角和可求得∠B,∠C;
(2)①由(1)可知∠BAD=∠CAD=36°,且∠AHN=∠AHE=90°,可求得∠ANH=∠AEH=54°,可得AN=AE;
②由①知AN=AE,借助已知利用線段的和差可得CD=BN+CE.
試題解析:(1)∵BA=BC,
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案為:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵MH⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
∴AN=AE,
即△ANE是等腰三角形;
②CD=BN+CE.
證明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,
∴BN+CE=BC﹣BD=CD,
即CD=BN+CE.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張長為8cm,寬為6cm的長方形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與長方形的一個頂點重合,其余的兩個頂點在長方形的邊上).則剪下的等腰三角形的底邊長可以是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對九年級全體學生進行了一次學業(yè)水平測試,成績評定分為A,B,C,D四個等級(A,B,C,D分別代表優(yōu)秀、良好、合格、不合格)該校從九年級學生中隨機抽取了一部分學生的成績,繪制成以下不完整的統(tǒng)計圖.請你根據統(tǒng)計圖提供的信息解答下列問題;
(1)本次調查中,一共抽取了__名學生的成績;
(2)將上面的條形統(tǒng)計圖補充完整,寫出扇形統(tǒng)計圖中等級C的百分比__
(3)若等級D的5名學生的成績(單位:分)分別是55、48、57、51、55.則這5個數(shù)據的中位數(shù)是__分,眾數(shù)是__分.
(4)如果該校九年級共有500名學生,試估計在這次測試中成績達到優(yōu)秀的人數(shù)__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,射線與y軸的正半軸的夾角為45°,點B是射線上的動點.
(1)如圖25-1,當線段的值最小時,求點B的坐標;
(2)如圖25-2,且,軸交射線于點D,且,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知: ,點……在射線ON上,點……在射線OM上,△、△、△……均為等邊三角形,若,則△的邊長為( )
A. 6 B. 12 C. 32 D. 64
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還有4升油.假設加油前、后汽車都以100千米小時的速度勻速行駛,已知油箱中剩余油量(升)與行駛時間(小時)之間的關系如圖所示.
(1)求張師傅加油前油箱剩余油量(升)與行駛時間(小時)之間的關系式;
(2)求出的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大小(每塊磚的厚度相等).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com