【題目】如圖,⊙和⊙相交于A、B兩點,與AB交于點C,的延長線交⊙于點D,點E為AD的中點,AE=AC,聯(lián)結.
(1)求證:;
(2)如果,,求⊙的半徑長.
【答案】(1)證明見解析;(2)5.
【解析】
(1)根據(jù)條件得到AC,AB的關系,再利用AC=AB即可解答.
(2)利用三角形相似即可解答.
⑴ ⊙O1和⊙O2相交于A、B兩點,
∴O1O2是AB的垂直平分線
∴AB=2AC,
∵E為AD的中點
∴AD=2AE,O1E⊥AD,
∵AE=AC,
∴AB=AD,
∴O1E=O1C.
⑵ ∵O1E⊥AD,
∴∠O1EO2=90°,
在RT△O1EO2中,∠O1EO2=90°,O1O2=10,O1E=6,
∵O1E2+O2E2=O1O22,
O2E2=102-62=64,
∴O2E=8,
∵∠O1EO2=∠O2CA=90°,
∠O2=∠O2,
∴△O2EO1∽△O2CA,
∴,
∵O1O2=10,
AC=AE=O2E-O2A=8-O2A,O1E=6,
∴,
∴A=5.
即⊙的半徑長為5.
故答案為5.
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):
如圖(1),和都是等腰直角三角形,,點在線段上,點在線段上,請直接寫出線段與的數(shù)量關系:______;(直接填寫結果)
(2)操作探究:
如圖(2),將圖中的繞點順時針旋轉(),I小題中線段與線段的數(shù)量關系是否成立?如果不成立,說明理由,如果成立,請你結合圖(2)給出的情形進行證明;
(3)解決問題:
將圖(1)中的繞點順時針旋轉,若,在備用圖中畫出旋轉圖形,并判斷以、、、四個點為頂點的四邊形的形狀.(不寫證明過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過反比例函數(shù) y= (k < 0)的圖象上一點 A 作 x 軸的垂線交 x 軸于點 B ,O 為坐標原點, 且△ABO 的面積 S△ABO = 4 .
(1)求 k 的值;
(2)若二次函數(shù) y = ax2 與反比例函數(shù) y= (k < 0)的圖象交于點C(-2,m) ,請結合函數(shù)的圖象寫出滿足 ax2< 的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,AC與BD相交于點E,點F在線段BC上,,.
(1)求證:AB∥EF;
(2)求S△ABE:S△EBC:S△ECD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學生“五·一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調(diào)查結果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結合圖中信息解答下列問題:
(1)八(1)班共有學生 人在扇形統(tǒng)計圖中,表示“B類別的扇形的圓心角的度數(shù)為 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)若小華、小剛兩名同學,各自從三個最區(qū)中隨機選一個作為5月1日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.
(1)求證:∠DCA=∠EBC;
(2)延長BE交AD于F,求證:AB2=AF·AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解一元二次方程x2+4x﹣9=0時,原方程可變形為( )
A. (x+2)2=1 B. (x+2)2=7 C. (x+2)2=13 D. (x+2)2=19
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經(jīng)過點A,反比例函數(shù)y2=﹣的圖象經(jīng)過點B,則m的值是( )
A.m=3B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com