【題目】如圖,正方形ABCD中,E、F分別是邊BC,CD上一點(diǎn),∠EAF=45°.將△ABE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,連接EF,求證EF=FG.

【答案】證明見解析.

【解析】

首先證明FG=BE+DF;其次證明AE=AG,EAF=FAG,此為解題的關(guān)鍵性結(jié)論;證明EAF≌△GAF,得到EF=FG,即可解決問題.

證明:如圖,

由題意得:ABE≌△ADG,

∴∠BAE=DAG,AE=AG,BE=DG;

FG=BE+DF;

∴∠BAE+FAD=FAD+DAG;

∵∠EAF=45°,BAD=90°,

∴∠BAE+FAD=90°-45°=45°,

∴∠FAG=45°,EAF=FAG;

EAFGAF中,

∴△EAF≌△GAF(SAS),

EF=FG.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于點(diǎn)A、B,且過點(diǎn)C(4,3).

(1)求的值和該拋物線頂點(diǎn)P的坐標(biāo);

(2)將該拋物線向左平移,記平移后拋物線的頂點(diǎn)為P′,當(dāng)四邊形APPB為平行四邊形時(shí),求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,

1)尺規(guī)作圖作ABC的外接圓(保留作圖痕跡,不寫作法);

2)設(shè)ABC是等腰三角形,底邊,腰,求圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(9,6),ABy軸,垂足為B,點(diǎn)P從原點(diǎn)O出發(fā)向x軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),若點(diǎn)P與點(diǎn)Q的速度之比為1:2,則下列說法正確的是( 。

A. 線段PQ始終經(jīng)過點(diǎn)(2,3)

B. 線段PQ始終經(jīng)過點(diǎn)(3,2)

C. 線段PQ始終經(jīng)過點(diǎn)(2,2)

D. 線段PQ不可能始終經(jīng)過某一定點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x 軸交于點(diǎn) AB,與 y 軸交于點(diǎn) C,且 OC2OB, 點(diǎn) D 為線段 OB 上一動(dòng)點(diǎn)(不與點(diǎn) B 重合),過點(diǎn) D 作矩形 DEFH,點(diǎn) H、F 在拋物線上,點(diǎn) E x 上.

1)求拋物線的解析式;

2)當(dāng)矩形 DEFH 的周長最大時(shí),求矩形 DEFH 的面積;

3)在(2)的條件下,矩形 DEFH 不動(dòng),將拋物線沿著 x 軸向左平移 m 個(gè)單位,拋物線與矩形 DEFH的邊交于點(diǎn) M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過O、A、B三點(diǎn),A(4,0)B(1,-3),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對稱軸交于點(diǎn)Q.

(1)直線PQ與x軸所夾銳角的度數(shù),并求出拋物線的解析式.

(2)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求: PD+DQ的最大值;②PD.DQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、PB、C是⊙O上四點(diǎn),∠APC=CPB=60°

1)求證:ABC是等邊三角形;

2)連接OA,OB,當(dāng)點(diǎn)P位于什么位置時(shí),四邊形PBOA是菱形?并說明理由;

3)已知PA=aPB=b,求PC的長(用含ab的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,AEBCCB延長線于E,CFAEAD延長線于點(diǎn)F

(1)求證:四邊形AECF是矩形;

(2)連接OE,若cosBAE,AB5,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校共有六個(gè)年級(jí),每個(gè)年級(jí) 10 個(gè)班,每個(gè)班約 40 名同學(xué).該校食堂共有 10 個(gè)窗口中午所有同學(xué)都在食堂用餐.經(jīng)了解,該校同學(xué)年齡分布在 12 歲(含 12 歲)到 18歲(含 18 歲)之間,平均年齡 15 歲.小天、小東兩位同學(xué),為了解全校同學(xué)對食堂各窗口餐食的喜愛情況,各自進(jìn)行了抽樣調(diào)查,并記錄了相應(yīng)同學(xué)的年齡,每人調(diào)查了 60 名同學(xué),將收集到的數(shù)據(jù)進(jìn)行了整理.

小天從初一年級(jí)每個(gè)班隨機(jī)抽取 6 名同學(xué)進(jìn)行調(diào)查,繪制統(tǒng)計(jì)圖表如下:

小東從全校每個(gè)班隨機(jī)抽取 1 名同學(xué)進(jìn)行調(diào)查,繪制統(tǒng)計(jì)圖表如下:

根據(jù)以上材料回答問題:

1)寫出圖 2 m 的值 ;

2)小天、小東兩人中,哪個(gè)同學(xué)抽樣調(diào)查的數(shù)據(jù)能較好地反映出該校同學(xué)對各窗口餐食的喜愛情況,并簡要說明另一名同學(xué)調(diào)查的不足之處;

3)為使每個(gè)同學(xué)在中午盡量吃到自己喜愛的餐食,學(xué)校餐食管理部門應(yīng)為 窗口盡 量多的分配工作人員,理由為      

查看答案和解析>>

同步練習(xí)冊答案