精英家教網 > 初中數學 > 題目詳情
(2012•鄂州)在銳角三角形ABC中,BC=4
2
,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動點,則CM+MN的最小值是
4
4
分析:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據BC=4
2
,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由銳角三角函數的定義即可求出CE的長.
解答:解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,
∵BC=4
2
,∠ABC=45°,BD平分∠ABC,
∴△BCE是等腰直角三角形,
∴CE=BC•cos45°=4
2
×
2
2
=4.
故答案為:4.
點評:本題考查的是軸對稱-最短路線問題,根據題意作出輔助線,構造出等腰直角三角形,利用銳角三角函數的定義求解是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•鄂州)在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2012個正方形的面積為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄂州)在實數0,-π,
3
,-4中,最小的數是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄂州)先化簡(
x2-4
x2-4x+4
-
1
2-x
1
x2-2x
,再在0,-1,2中選取一個適當的數代入求值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s=
ED+OPED•OP
,當t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案