已知直線y=-
3
3
x+2
與y軸交于點(diǎn)A,與x軸交于點(diǎn)B;若點(diǎn)P是直線AB上的一動(dòng)點(diǎn),坐標(biāo)平面中存在點(diǎn)Q,使以O(shè)、B、P、Q為頂點(diǎn)的四邊形為菱形,則點(diǎn)Q的坐標(biāo)是______.
(1)如圖

過點(diǎn)Q做QC⊥OB
∵OB=2
3

∴OC=
3

∴QC=tan30°
3
=1
∴點(diǎn)Q的坐標(biāo)是(
3
,-1)


(2)

過點(diǎn)Q做QC⊥OB
∵OB=2
3

OQ=2
3

∴CQ=
3

∴OC=-3
∴Q的坐標(biāo)是(-3,
3


(3)如圖

連△OQB是等邊三角形
∵OB=2
3

OC=
3
QC=3
∴Q的坐標(biāo)是(
3
,3)

(4)

過點(diǎn)Q做QC⊥OB
∵OB=2
3

OQ=2
3

CQ=sin30°•2
3
=
3

∴OC=3
∴Q的坐標(biāo)是(3,-
3

故答案為(
3
,-1)
,(3,-
3
),(
3
,3)(3,-
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且線段OA、OC(OA>OC)是方程x2-18x+80=0的兩根,將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處.
(1)求線段OA、OC的長(zhǎng);
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo)及折痕CE的長(zhǎng);
(3)是否存在過點(diǎn)D的直線l,使直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請(qǐng)直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A、B,則它的解析式是( 。
A.y=2x+3B.y=-2x+3C.y=-
3
2
x+3
D.y=-
2
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“保護(hù)生態(tài)環(huán)境,建設(shè)綠色家園”已經(jīng)從理念變?yōu)槿藗兊男袆?dòng).揚(yáng)州某地建立了綠色無公害蔬菜基地,現(xiàn)有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶種植A類蔬菜面積
(單位:畝)
種植B類蔬菜面積
(單位:畝)
總收入
(單位:元)
3112500
2316500
說明:不同種植戶種植的同類蔬菜每畝平均收入相等.
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)另有某種植戶準(zhǔn)備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.
(3)利用所學(xué)知識(shí):直接寫出該種植戶收益最大的租地方案和最大收益.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某超市進(jìn)了一批成本為6元/個(gè) 的文具.調(diào)查后發(fā)現(xiàn):這種文具每周的銷售量y(個(gè))與銷售價(jià)x(元/個(gè))之間的關(guān)系滿足一次函數(shù)關(guān)系,如表所示
銷售價(jià)x(元/個(gè))89.51114
銷售量y(個(gè))220205190160
(1)求y與x的函數(shù)關(guān)系式(不必寫出定義域);
(2)已知該超市這種文具每周的進(jìn)貨量不少于60個(gè),若該超市某周銷售這種文具(不考慮其他原因)的利潤(rùn)為800元,求該周每個(gè)文具的銷售量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,點(diǎn)A、C的坐標(biāo)分別是(a,0),(0,
3
),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與B、C不重合),過點(diǎn)D作直線l:y=-
3
x+b
交線段OA于點(diǎn)E.
(1)直接寫出矩形OABC的面積(用含a的代數(shù)式表示);
(2)已知a=3,當(dāng)直線l將矩形OABC分成周長(zhǎng)相等的兩部分時(shí)
①求b的值;
②梯形ABDE的內(nèi)部有一點(diǎn)P,當(dāng)⊙P與AB、AE、ED都相切時(shí),求⊙P的半徑.
(3)已知a=5,若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,設(shè)CD=k,當(dāng)k滿足什么條件時(shí),使矩形OABC和四邊形O1A1B1C1的重疊部分的面積為定值,并求出該定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

臺(tái)州椒江素有“中國被套繡衣之都”的美稱,其產(chǎn)品暢銷全球,某制造企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,椒江運(yùn)往A、B、C三地的運(yùn)費(fèi)分別是30元/件,8元/件,25元/件.設(shè)安排x件產(chǎn)品運(yùn)往A地.
(1)當(dāng)n=200時(shí),①根據(jù)信息填表:
A地B地C地合計(jì)
產(chǎn)品件數(shù)(件)x2x200
運(yùn)費(fèi)(元)30x
②若運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過4000元,則有哪幾種運(yùn)輸方案?
(2)若總運(yùn)費(fèi)為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一次函數(shù)y=2x+2的圖象如圖所示,則由圖象可知,方程2x+2=0的解為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一次函數(shù)y=ax+b與y=mx+n的圖象如圖所示,那么關(guān)于x,y的方程組
ax-y+b=0
mx-y+n=0
的解是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案