【題目】如圖,,分別平分的外角,內(nèi)角,外角.以下結(jié)論:①;②;③;④平分;⑤.其中正確的結(jié)論有______________.(把正確結(jié)論序號(hào)填寫在橫線上)

【答案】①②③⑤

【解析】

根據(jù)角平分線定義得出∠ABC=2ABD=2DBC,∠EAC=2EAD,∠ACF=2DCF,根據(jù)三角形的內(nèi)角和定理得出∠BAC+ABC+ACB=180°,根據(jù)三角形外角性質(zhì)得出∠ACF=ABC+BAC,∠EAC=ABC+ACB,根據(jù)已知結(jié)論逐步推理,即可判斷各項(xiàng).

解:∵AD平分∠EAC,
∴∠EAC=2EAD,
∵∠EAC=ABC+ACB,∠ABC=ACB
∴∠EAD=ABC,
ADBC,∴①正確;
ADBC
∴∠ADB=DBC,
BD平分∠ABC,
∴∠ABD=CBD,
∴∠ABD=ADB,∴②正確;
AD平分∠EACCD平分∠ACF
∴∠DAC=EAC,∠DCA=ACF,
∵∠EAC=ACB+ACB,∠ACF=ABC+BAC,∠ABC+ACB+BAC=180°
∴∠ADC=180°-(∠DAC+ACD
=180°-(∠EAC+ACF
=180°-(∠ABC+ACB+ABC+BAC
=180°-180°+ABC
=90°-ABC,∴③正確;
BD平分∠ABC,
∴∠ABD=DBC,
∵∠ADB=DBC,∠ADC=90°-ABC,
∴∠ADB不等于∠CDB,∴④錯(cuò)誤;

BD平分∠ABC
∴∠CBD=CBD=ABC,

CD平分∠ACF,
∴∠DCF=ACF,

∴∠DCF-CBD=ACF-ABC

∵∠BAC=ACF-ABC

BDC=DCF-CBD

∴∠BDC=BAC,⑤正確.
故答案為:①②③⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1: ,求大樓AB的高度是多少?(精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )

A.( ,﹣
B.(﹣
C.(2,﹣2)
D.( ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面內(nèi)的∠M和∠N,若存在一個(gè)常數(shù)k0,使得∠MkN360°,則稱∠N為∠Mk系補(bǔ)周角.如若∠M90°,∠N45°,則∠N為∠M6系補(bǔ)周角.

1)若∠H120°,則∠H4系補(bǔ)周角的度數(shù)為 ;

2)在平面內(nèi)ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),連接BE,DE

①如圖1,∠D60°,若∠B是∠E3系補(bǔ)周角,求∠B的度數(shù);

②如圖2,∠ABE和∠CDE均為鈍角,點(diǎn)F在點(diǎn)E的右側(cè),且滿足∠ABF=nABE,∠CDF=nCDE(其中n為常數(shù)且n1),點(diǎn)P是∠ABE角平分線BG上的一個(gè)動(dòng)點(diǎn),在P點(diǎn)運(yùn)動(dòng)過程中,請(qǐng)你確定一個(gè)點(diǎn)P的位置,使得∠BPD是∠Fk系補(bǔ)周角,并直接寫出此時(shí)的k值(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)·8÷(15x2y2) (2)

(3) (4)(3ab+4)2(3ab4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形D為邊AC的中點(diǎn),AEECBD=EC

1求證:BDA≌△CEA;

2請(qǐng)判斷ADE是什么三角形,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一次函數(shù)的圖象與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊三角形ABC,

1)求ABC的面積。

2)如果在第二象限內(nèi)有一點(diǎn)P),試用含有a的代數(shù)式表示四邊形ABPO的面積,并求出當(dāng)ABP的面積與ABC的面積相等時(shí)a的值。

3)在x軸上,是否存在點(diǎn)M,使MAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn):整式與分式
(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)
(2)( ﹣x+1)÷

查看答案和解析>>

同步練習(xí)冊(cè)答案