如圖,D、E分別是等邊三角形ABC的AB、CA邊延長線上的點,且BD=AE,連接BE、CD.求證:BE=CD.

【答案】分析:由三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到一對角相等,一對邊相等,再由AE=BD,利用SAS得出三角形AEB與三角形BDC全等,利用全等三角形的對應邊相等可得出BE=CD,得證.
解答:證明:∵△ABC為等邊三角形,
∴∠BAC=∠ABC=60°,AB=BC,
∴∠EAB=∠DBC=120°,
在△AEB和△BDC中,

∴△AEB≌△BDC(SAS),
∴BE=CD.
點評:此題考查了全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E、D分別是等邊三角形ABC的AB、AC邊上的點,且D為AC的中點,
AE
EB
=
1
3
,則和△AED(不包含△AED)相似的三角形有( 。
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安溪縣質(zhì)檢)如圖,D、E分別是等邊三角形ABC的AB、CA邊延長線上的點,且BD=AE,連接BE、CD.求證:BE=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•江漢區(qū)模擬)如圖,D、E分別是等邊三角形ABC的邊BC、CA延長線上的點,且CD=AE,連接AD、BE,求證:AD=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD、BE分別是等邊三角形ABC的高,EF∥BC交AD于點F,BE=6cm,求S△BEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD、BE分別是等邊△ABC中BC、AC上的高.M、N分別在AD、BE的延長線上,∠CBM=∠ACN.求證:AM=BN.

查看答案和解析>>

同步練習冊答案