精英家教網(wǎng)如圖:在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是(  )
A、等腰梯形B、矩形C、菱形D、正方形
分析:連接四邊形ADCB的對角線,通過全等三角形來證得AC=BD,從而根據(jù)三角形中位線定理證得四邊形NPQM的四邊相等,可得出四邊形MNPQ是菱形.
解答:精英家教網(wǎng)解:連接BD、AC;
∵△ADE、△ECB是等邊三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中點,
∴MN是△ACD的中位線,即MN=
1
2
AC;
同理可證得:NP=
1
2
DB,QP=
1
2
AC,MQ=
1
2
BD;
∴MN=NP=PQ=MQ,
∴四邊形NPQM是菱形;
故選C.
點評:此題主要考查的是菱形的判定方法,能發(fā)現(xiàn)并構(gòu)建出全等三角形,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案