【題目】(1)如圖①,在等邊三角形ABC內(nèi),點(diǎn)P到頂點(diǎn)A,B,C的距離分別是3,4,5,則∠APB= ,由于,PB,PC不在同一三角形中,為了解決本題,我們可以將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60o到處,連接,此時(shí),≌ ,就可以利用全等的知識(shí),進(jìn)而將三條線段的長(zhǎng)度轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB的度數(shù);
(2)請(qǐng)你利用第(1)題的解答方法解答:如圖②,△ABC中,,D、E為BC上的點(diǎn),且,求證:;
(3)如圖③,在△ABC中,,若以BD、DE、EC為邊的三角形是直角三角形時(shí),求BE的長(zhǎng).
【答案】(1)150,;(2)見(jiàn)解析;(3)BE=1+或2+
【解析】
(1)(1)將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△AB\P處,△ABP≌△ABP\;進(jìn)一步說(shuō)明∠PAP1=60°,再利用等邊三角形的判定得出△AP P1為等邊三角形,即可得出∠APP'的度數(shù);由勾股定理的逆定理可得∠PP'C=90°,即可得出答案;
(2)把繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到.連接,;
再由"SAS"得到,可得DE=DG,即可把EF,BE,FC放到一個(gè)直角三角形中,用勾股定理證明即可;
(3)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),可得,然后根據(jù)全等三角形的性質(zhì)和已知條件說(shuō)明,可得DF=DE,由以BD、DE、EC為邊的三角形是直角三角形,分情況討論,由直角三角形的性質(zhì)可求解即可.
(1)解:(1)將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△AB\P處,
∴△ABP≌△ABP\
∴AB=AC,AP=AP\,∠BAP=∠CAP\
∴∠BAC=∠PAP\=60°
∴△APP\是等邊三角形
∴∠APP\=600
∵P\C=PB=4,PP'=PA=3,PC=5,
∴PC2=25=P\P2+P\C2=9+16
∴∠PP\C=90°
∴APP\C是直角三角形,
∴∠APB=∠AP\C=∠APP\∠LP\PC=60°+90°=150°
故答案為:150,△ABP
150,
(2)如圖2,把繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到.連接,
則.
,,.
,.
,
在和中,
,
.
,
又,
,即;
(3)如圖3,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,,
,,,
,,
,
,,
,且,,
,
以、、為邊的三角形是直角三角形,
以、、為邊的三角形是直角三角形,是直角三角形,
若,且,,,
,
,
,
若,且,,,
,
,
,
∴ 綜上所述,BE=1+或2+
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,且點(diǎn)C為⊙O上的一點(diǎn),∠BAC=30°,M是OA上一點(diǎn),過(guò)M作AB的垂線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)E,直線CF交EN于點(diǎn)F,且∠ECF=∠E.
(1)證明:CF是⊙O的切線;
(2)設(shè)⊙O的半徑為1,且AC=CE,求MO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,點(diǎn)P為線段BE延長(zhǎng)線上一點(diǎn),連接CP,以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F.
(1)求證:;
(2)連接BD,請(qǐng)你判斷AC與BD有什么位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖①,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD是△ABC的完美分割線;
(2)如圖②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC=90°,直線為⊙P的切線.
⑴ 試說(shuō)明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, A(0,2),B(-1,0),Rt△AOC的面積為4.
(1)求點(diǎn)C的坐標(biāo);
(2)拋物線經(jīng)過(guò)A、B、C三點(diǎn),求拋物線的解析式和對(duì)稱(chēng)軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)(1)班部分學(xué)生接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了如圖①②兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)九年級(jí)(1)班接受調(diào)查的學(xué)生共有多少名?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷(xiāo)售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷(xiāo)量將增加10箱,設(shè)每箱牛奶降價(jià)x元(x為正整數(shù)),每月的銷(xiāo)量為y箱.
(1)寫(xiě)出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價(jià),才能使每月銷(xiāo)售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com