【題目】在平面直角坐標(biāo)系中,直線y1=kx+b經(jīng)過點(diǎn)P(2,2)和點(diǎn)Q(0,﹣2),與x軸交于點(diǎn)A,與直線y2=mx+n交于點(diǎn)P.
(1)求出直線y1=kx+b的解析式;
(2)當(dāng)m<0時(shí),直接寫出y1<y2時(shí)自變量x的取值范圍;
(3)直線y2=mx+n繞著點(diǎn)P任意旋轉(zhuǎn),與x軸交于點(diǎn)B,當(dāng)△PAB是等腰三角形時(shí),點(diǎn)B有幾種位置?請(qǐng)你分別求出點(diǎn)B的坐標(biāo).
【答案】(1)y1=2x-2(2)x<2(3)(+1,0)、(3,0)、(3.5,0)、(1-,0)
【解析】
(1)運(yùn)用待定系數(shù)法求解即可;
(2)根據(jù)m<0時(shí),由函數(shù)圖象即可確定當(dāng)y1<y2時(shí)自變量x的取值范圍;
(3)分m>0時(shí)和m<0時(shí)兩種情況進(jìn)行討論,根據(jù)等腰三角形的性質(zhì)確定點(diǎn)B的位置即可.
(1)把P(2,2)和點(diǎn)Q(0,﹣2)代入y1=kx+b得,
,解得,
所以,直線的解析式為:y1=2x-2
(2)當(dāng)m<0時(shí),由圖象得,y1<y2時(shí)自變量x的取值范圍x<2;
(3)過點(diǎn)P作PM⊥x軸,交于點(diǎn)M
由題意可知A(1,0),M(2,0),AP=,AM=1
當(dāng)m>0時(shí),點(diǎn)B有3種位置使得△PAB為等腰三角形
①當(dāng)AP=AB時(shí),AB=,∴B(+1,0)
②當(dāng)PA=PB時(shí),AB=2AM=2,∴B(3,0)
③當(dāng)BA=BP時(shí),設(shè)AB=x,由等面積法可得S△ABP=2x=
解得x=2.5,∴B(3.5,0)
當(dāng)m<0時(shí),點(diǎn)B有1種位置使得△PAB為等腰三角形
當(dāng)AB=AP時(shí),OB=-1,∴B(1-,0)
綜上所述,點(diǎn)B有4種位置使得△PAB為等腰三角形,坐標(biāo)分別為(+1,0)、(3,0)、(3.5,0)、(1-,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州教育局為了解我州八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了某縣部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)檢測了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)
請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(1)a= %,并寫出該扇形所對(duì)圓心角的度數(shù)為 ,請(qǐng)補(bǔ)全條形圖.
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該縣共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y= (m≠0)的圖象在第一象限交于點(diǎn)P(1,3),連接OP.
(1)求反比例函數(shù)y=(m≠0)的表達(dá)式;
(2)若△AOB的面積是△POB的面積的2倍,求直線y=kx+b的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備銷售甲、乙兩種商品共80件,已知甲種商品進(jìn)貨價(jià)為每件70元,乙種商品進(jìn)貨價(jià)為每件35元,在定價(jià)銷售時(shí),2件甲種商品與3件乙種商品的售價(jià)相同,3件甲種商品比2件乙商品的售價(jià)多150元.
(1)每件甲商品與每件乙商品的售價(jià)分別是多少元?
(2)若甲、乙兩種商品的進(jìn)貨總投入不超過4200元,則至多進(jìn)貨甲商品多少件?
(3)若這批商品全部售完,該商店至少盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)興趣小組參加一次單元測驗(yàn),成績統(tǒng)計(jì)情況如下表.
分 數(shù) | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 82 | 83 | 84 | 86 | 88 | 90 | 92 |
人 數(shù) | 1 | 1 | 5 | 4 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 2 |
(1)該興趣小組有多少人?
(2)興趣小組本次單元測試成績的平均數(shù)、中位數(shù)、眾數(shù)各是多少?
(3)老師打算為興趣小組下單元考試設(shè)定一個(gè)新目標(biāo),學(xué)生達(dá)到或超過目標(biāo)給予獎(jiǎng)勵(lì),并希望小組 三分之一左右的優(yōu)秀學(xué)生得到獎(jiǎng)勵(lì),請(qǐng)你幫老師從平均數(shù)、中位數(shù)、眾數(shù)三個(gè)數(shù)中選擇一個(gè)比較恰 當(dāng)?shù)哪繕?biāo)數(shù);如果計(jì)劃讓一半左右的人都得到獎(jiǎng)勵(lì),確定哪個(gè)數(shù)作為目標(biāo)恰當(dāng)些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記作,即當(dāng)x為非負(fù)整數(shù)時(shí),若,則.反之,當(dāng)n為非負(fù)整數(shù)時(shí),若,則,如,,,……試解決下列問題:
(1)填空:①________.②若,則實(shí)數(shù)x的取值范圍為________;
(2)求滿足的所有非負(fù)實(shí)數(shù)x的值;
(3)若關(guān)于x的不等式組的整數(shù)解恰好有3個(gè),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分別是邊AB,AC的中點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿DE方向運(yùn)動(dòng),過點(diǎn)P作PQ⊥BC于Q,過點(diǎn)Q作QR∥BA交AC于R,當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)P停止運(yùn)動(dòng).設(shè)BQ=x,QR=y.
(1)求點(diǎn)D到BC的距離DH的長;
(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)是否存在點(diǎn)P,使△PQR為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對(duì)成績進(jìn)行了統(tǒng)計(jì),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)跟進(jìn)相關(guān)信息,解答下列問題:
(Ⅰ)本次抽測的男生人數(shù)為 ,圖①中m的值為 ;
(Ⅱ)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),根據(jù)樣本數(shù)據(jù),估計(jì)該校350名九年級(jí)男生中有多少人體能達(dá)標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用無刻度的直尺按要求作圖,請(qǐng)保留畫圖痕跡,不需要寫作法.
(1)如圖1,已知∠AOB,OA=OB,點(diǎn)E在OB邊上,四邊形AEBF是矩形.請(qǐng)你只用無刻度的直尺在圖中畫出∠AOB的平分線.
(2)如圖2,在8×6的正方形網(wǎng)格中,請(qǐng)用無刻度直尺畫一個(gè)與△ABC面積相等,且以BC為邊的平行四邊形,頂點(diǎn)在格點(diǎn)上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com