如圖,在直角坐標(biāo)系中,A(0,6),C(8,0),OA、AC的中點(diǎn)為M、N,動(dòng)點(diǎn)P從O出發(fā)以每秒1個(gè)單位的速度按照箭頭方向通過C、N到M,設(shè)P點(diǎn)從O開始運(yùn)動(dòng)的路程為x,△AOP的面積為y.
(1)求直線AC的解析式;
(2)點(diǎn)P從O出發(fā)到M止,求y與x的函數(shù)關(guān)系式;
(3)若⊙P的半徑為3,⊙N的半徑為1;在點(diǎn)P運(yùn)動(dòng)過程中,t為何值時(shí)⊙P與⊙N相切,(直接寫出t值).

【答案】分析:(1)直接運(yùn)用待定系數(shù)法將點(diǎn)A、B的坐標(biāo)代入解析式就可以求出直線AC的解析式.
(2)y與x的函數(shù)關(guān)系式,從點(diǎn)A在三段不同的線段上運(yùn)動(dòng)的變化規(guī)律不同有三個(gè)不同的解析式,當(dāng)在CN上移動(dòng)是利用勾股定理表示出高從而表示出關(guān)系式.
(3)⊙P與⊙N相切的位置分為六種情況進(jìn)行計(jì)算,利用圓相切的性質(zhì)求出相應(yīng)的t的值.
解答:解:(1)設(shè)直線AC的解析式為:y=kx+b,由題意得:
解得:

∴直線AC的解析式為:

(2)①當(dāng)0<x≤8時(shí),
y=OP•AO
∵OP=t,AO=6
y=3x; 
②當(dāng)8<x≤13時(shí),由勾股定理可以求出:AC=10
∵N是AC的中點(diǎn)
∴NC=AC=5
∵M(jìn)是AO中點(diǎn),
∴MN是△AOC得中位線
∴MN=OC=4
作PE⊥OA于E
∴△AEP∽△AOC

解得:
PE=
∴y=
;

③當(dāng)13<x<17時(shí),
PN=x-13
∴MP=4-(x-13)=17-x
∴y=
∴y=-3x+51

(3)利用三角形相似和勾股定理可以求出:
t=9或11或15或17或4+或4-

點(diǎn)評(píng):本題是一道一次函數(shù)的綜合題,考查了待定系數(shù)法求函數(shù)的解析式,勾股定理的運(yùn)用,三角形的面積公式等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案