【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,且BE=CF,EF⊥DF,求證:BF=CD.

【答案】證明:∵四邊形ABCD是矩形,
∴∠B=∠C=90°,
∵EF⊥DF,
∴∠EFD=90°,
∴∠EFB+∠CFD=90°,
∵∠EFB+∠BEF=90°,
∴∠BEF=∠CFD,
在△BEF和△CFD中,
,
∴△BEF≌△CFD(ASA),
∴BF=CD.
【解析】由四邊形ABCD為矩形,得到四個(gè)角為直角,再由EF與FD垂直,利用平角定義得到一對(duì)角互余,利用同角的余角相等得到一對(duì)角相等,利用ASA得到三角形BEF與三角形CFD全等,利用全等三角形對(duì)應(yīng)邊相等即可得證.此題考查了矩形的性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握矩形的性質(zhì)是解本題的關(guān)鍵.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

270

500元

餐椅

a﹣110

70

已知用600元購(gòu)進(jìn)的餐桌數(shù)量與用160元購(gòu)進(jìn)的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場(chǎng)購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場(chǎng)計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請(qǐng)問怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)由于原材料價(jià)格上漲,每張餐桌和餐椅的進(jìn)價(jià)都上漲了10元,按照(2)中獲得最大利潤(rùn)的方案購(gòu)進(jìn)餐桌和餐椅,在調(diào)整成套銷售量而不改變銷售價(jià)格的情況下,實(shí)際全部售出后,所得利潤(rùn)比(2)中的最大利潤(rùn)少了2250元.請(qǐng)問本次成套的銷售量為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)E是AC的中點(diǎn),AC=2AB,∠BAC的平分線AD交BC于點(diǎn)D,作AF∥BC,連接DE并延長(zhǎng)交AF于點(diǎn)F,連接FC.
求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫弧,分別交AC,AB于點(diǎn)M,N,再分別以點(diǎn)M,N為圓心,大于 MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,若CD=4,AB=15,則△ABD的面積是( 。

A.15
B.30
C.45
D.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線y= x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;
(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和SBOC , 記S=S四邊形MAOC﹣SBOC , 求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2 , 點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A′、B′、M′,過點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購(gòu)進(jìn)甲乙兩種商品,甲的進(jìn)貨單價(jià)比乙的進(jìn)貨單價(jià)高20元,已知20個(gè)甲商品的進(jìn)貨總價(jià)與25個(gè)乙商品的進(jìn)貨總價(jià)相同.
(1)求甲、乙每個(gè)商品的進(jìn)貨單價(jià);
(2)若甲、乙兩種商品共進(jìn)貨100件,要求兩種商品的進(jìn)貨總價(jià)不高于9000元,同時(shí)甲商品按進(jìn)價(jià)提高10%后的價(jià)格銷售,乙商品按進(jìn)價(jià)提高25%后的價(jià)格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進(jìn)貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:

①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;
③3a+c>0;
④當(dāng)y<0時(shí),x的取值范圍是-1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大。
其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A、D分別在x軸和y軸上,CD∥x軸,BC∥y軸.點(diǎn)P從D點(diǎn)出發(fā),以1cm/s的速度,沿五邊形DOABC的邊勻速運(yùn)動(dòng)一周.記順次連接P、O、D三點(diǎn)所圍成圖形的面積為Scm2 , 點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.已知S與t之間的函數(shù)關(guān)系如圖2中折線段OEFGHI所示.

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若直線PD將五邊形OABCD分成面積相等的兩部分,求直線PD的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案