【題目】如圖所示,在□ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)O作一條直線分別交AB,CD于點(diǎn)E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長(zhǎng).
【答案】
(1)
證明:在□ABCD中,
∵AC與BD相交于點(diǎn)O,
∴OA=OC,AB∥CD,
∴∠OAE=∠OCF,∠OEA=∠OFC,
∴△OAE≌△OCF,∴OE=OF.
(2)
解:∵△OAE≌△OCF,
∴AE=CF,
∴BE+CF=AB=6,
又∵EF=2OE=4,
∴四邊形BCFE的周長(zhǎng)=BE+CF+EF+ BC=6+4+5=15(cm)
【解析】(1)由平行四邊形的性質(zhì)可得OA=OC , AB∥CD , ∠OAE=∠OCF , ∠OEA=∠OFC , 則可證明△OAE≌△OCF , 則OE=OF;(2)EF=2OE=4,BC已知,由(1)可得BE+CF=BE+AE=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A1B1C1 .
(1)在正方形網(wǎng)格中作出△A1B1C1;
(2)在x軸上找一點(diǎn)D,使DB+DB1的值最小,并求出D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)此次共調(diào)查了多少位學(xué)生?
(2)將表格填充完整;
步行 | 騎自行車 | 坐公共汽車 | 其他 |
50 |
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若ab>0,則函數(shù)y=ax+b與y= (a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊長(zhǎng)為2的正方形ABCD中,E是BA延長(zhǎng)線上一點(diǎn),且AE=AB,點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度沿D→CB向終點(diǎn)B運(yùn)動(dòng),直線EP交AD于點(diǎn)F,過點(diǎn)F作直線FG⊥DE于點(diǎn)G,交AB于點(diǎn)R.
(1)求證:AF=AR;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求當(dāng)選t為何值時(shí),四邊形PRBC是矩形?
(3)如圖2,連接PB,請(qǐng)直線寫出使△PRB是等腰三角形時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點(diǎn)A(-3,0)和B(2,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,若點(diǎn)D為CB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),E為x軸上一動(dòng)點(diǎn),拋物線
對(duì)稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y,則( )
A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正確的結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com