【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為邊BC上的一點(diǎn),連接AD,過(guò)點(diǎn)C作AD的垂線,交過(guò)點(diǎn)B與邊AC平行的直線于點(diǎn)E,CE交邊AB于點(diǎn)F.
(1)求∠EBF的度數(shù);
(2)求證:△ACD≌△CBE;
(3)若AD平分∠BAC,判斷△BEF的形狀,并說(shuō)明理由.
【答案】(1)∠EBF=45°;(2)證明見(jiàn)詳解;(3)△BEF是等腰三角形.
【解析】
(1)運(yùn)用等腰三角形的性質(zhì)與平行線的性質(zhì)即可得出結(jié)論;
(2)根據(jù)“角邊角”可證明出△ACD≌△CBE;
(3)根據(jù)△ACD≌△CBE可得∠E=∠ADC=67.5°,由(1)可知∠EBF=45°,即可得出∠BFE=67.5°,則∠E=∠BFE,即可證明得△BEF是等腰三角形.
(1)解:∵∠ACB=90°,AC=BC,
∴∠ABC=∠CAB=45°,
∵BE∥AC,
∴∠CBE+∠ACB=180°,
∴∠CBE=90°,
∴∠EBF=45°.
(2)證明:∵AD⊥CE,
∴∠ACE+∠CAD=90°,
∵∠ACB=90°,
∴∠ACE+∠BCE=90°,
∴∠CAD=∠BCE,
∵AC=BC,∠ACB=∠CBE=90°,
∴△ACD≌△CBE;
(3)解:△BEF是等腰三角形,
理由如下:∵AD平分∠BAC,
∴∠CAD=22.5°,
∵△ACD≌△CBE,
∴∠E=∠ADC=67.5°,
由(1)可知,∠EBF=45°,
∴∠BFE=180°-45°-67.5°=67.5°,
∴∠E=∠BFE,
∴△BEF是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅家有一塊L形的菜地,要把L形的菜地按如圖所示分成兩塊面積相等的梯形,種上不同的蔬菜.這兩個(gè)梯形的上底都是a m,下底都是b m,高都是(b-a) m.
(1)求小紅家這塊L形菜地的面積.(用含a、b的代數(shù)式表示)
(2)若a2+b2=15,ab=5,求小紅家這塊L形菜地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值
解:設(shè)另一個(gè)因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開(kāi),得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個(gè)因式是(2x3),a 的值是6.
請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(10,0)、C(0,3),直線 與BC相交于點(diǎn)D,拋物線y=ax2+bx經(jīng)過(guò)A、D兩點(diǎn).
(1)求拋物線的解析式;
(2)連接AD,試判斷△OAD的形狀,并說(shuō)明理由.
(3)若點(diǎn)P是拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),對(duì)稱軸與OD、x軸分別交于點(diǎn)M、N,問(wèn):是否存在點(diǎn)P,使得以點(diǎn)P、O、M為頂點(diǎn)的三角形與△OAD相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個(gè)正方形,如果所剪得的兩個(gè)正方形邊長(zhǎng)都是1,那么圓形紙片和扇形紙片的面積比是( )
A.4:5
B.2:5
C.
:2
D.
:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在同一直角坐標(biāo)系中,反比例函數(shù)y= 與二次函數(shù)y=﹣x2+2x+c的圖象交于點(diǎn)A(﹣1,m).
(1)求m、c的值;
(2)求二次函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的函數(shù)y=k(x+1)和y= (k≠0)在同一坐標(biāo)系中的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com