【題目】如圖,點A、O、B在同一條直線上.

(1)∠AOC比∠BOC大100°,求∠AOC與∠BOC的度數(shù);

(2)在(1)的條件下,若∠BOC與∠BOD互余,求∠BOD的度數(shù);

(3)在(1)(2)的條件下,若OE平分∠AOC,求∠DOE的度數(shù).

【答案】(1)BOC=40°,∠AOC=140°.(2)50°.(3)160°.

【解析】

(1)由點A、O、B在同一條直線上得∠AOC+BOC=180°,因為∠AOC比∠BOC100°,所以用∠BOC+100°表示∠AOC從而求出∠BOC,進而求出∠AOC;

(2)由∠BOC與∠BOD互余,所以∠BOD=90°-BOC,從而求得∠BOD的度數(shù);

(3)由(2)得∠COD=90°,OE平分∠AOC,得∠COE=AOC,從而求得∠DOE的度數(shù).

(1)因為∠AOC比∠BOC100°,

所以∠AOC=BOC+100°,

又因為點A、O、B在同一條直線上,

所以∠AOC+BOC=180°,

所以∠BOC+100°+BOC=180°,

所以∠BOC=40°,AOC=140°,

(2)因為∠BOC與∠BOD互余,

所以∠BOD+BOC=90°,

所以∠BOD=90°-BOC=90°-40°=50°,

(3)因為OE平分∠AOC,

所以得∠COE=AOC=70°,

因為∠BOD+BOC=90°,

所以∠DOE=COE+COD=COE+BOD+BOC=70°+90°=160°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,轉(zhuǎn)盤A、B中各個扇形的面積相等,且分別標有數(shù)字.小明和小麗玩轉(zhuǎn)轉(zhuǎn)盤游戲,規(guī)則如下:分別轉(zhuǎn)動轉(zhuǎn)盤A、B,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,將兩個指針所指扇形內(nèi)的數(shù)字相乘(若指針停在等分線上,那么重轉(zhuǎn)一次).
(1)用列表法(或樹狀圖)分別求出數(shù)字之積為3的倍數(shù)及數(shù)字之積為5的倍數(shù)的概率;
(2)小亮和小麗想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小亮得3分;數(shù)字之積為5的倍數(shù)時,小麗得4分,這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,請你修改得分規(guī)定,使游戲雙方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算或化簡:
(1)計算:21+ cos30°+|﹣5|﹣(π﹣2017)0
(2)化簡:(x﹣5+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩點在數(shù)軸上對應(yīng)的數(shù)分別為a,b,且點A在點B的左邊,|a|=10,a+b=80,ab<0.

(1)求出a,b的值;

(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動.

①設(shè)兩只電子螞蟻在數(shù)軸上的點C相遇,求出點C對應(yīng)的數(shù)是多少?

②經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距20個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB=8cm,C是線段AB上一點,AC=3.2cm,MAB的中點,NAC的中點.

(1)求線段CM的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某小區(qū)家庭用水情況,小麗隨機調(diào)查了該小區(qū)部分家庭4月份的用水量,并將收集的數(shù)據(jù)整理并繪制成如下條形統(tǒng)計圖.

(1)求小麗調(diào)查的家庭總數(shù)?
(2)所調(diào)查家庭4月份用水量的眾數(shù)為噸,中位數(shù)為噸.
(3)該小區(qū)共有200戶家庭,請估計這個小區(qū)4月份的用水總量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距200km,快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),

1)如果兩車同時出發(fā),相向而行,出發(fā)后幾時兩車相遇?相遇時離甲地多遠?

2)如果兩車同時出發(fā),同向(從乙開始向甲方向)而行,出發(fā)后幾時兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D在邊AB上,連接CD,將△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于點F,若∠B=α,則∠ADC的度數(shù)是 (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

A、B在數(shù)軸上分別表示兩個數(shù)a、b,A、B兩點間的距離記為|AB|,O表示原點.當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A為原點,如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點都不在原點時,

①如圖2,若點AB都在原點的右邊時,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如圖3,若點A、B都在原點的左邊時,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如圖4,若點AB在原點的兩邊時,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列問題:

(1)綜上所述,數(shù)軸上AB兩點間的距離為|AB|=______.

(2)若數(shù)軸上的點A表示的數(shù)為3,點B表示的數(shù)為-4,則A、B兩點間的距離為______;

(3)若數(shù)軸上的點A表示的數(shù)為x,點B表示的數(shù)為-2,則|AB|=______,若|AB|=3,則x的值為______.

查看答案和解析>>

同步練習(xí)冊答案