如圖,拋物線y=ax2+bx+4與x軸交于A、B兩點,且A、B兩點的坐標分別  為(3,0)、(-1,0),與y軸交于點C.
(1)求出該拋物線的解析式;
(2)若拋物線的頂點為M,求四邊形AOCM的面積;
(3)若有兩個動點D、E同時從點O出發(fā),其中點D以每秒個單位長度的速度沿線段OA運動,點E以每秒4個單位長度的速度沿折線O→C→A運 動,設運動時間為t秒.
①在運動過程中,是否存在DE∥OC?若存在,請求出此時t的值;若不存在,請說明理由; 
②若△ODE的面積為S,求出S關于t的函數(shù)解析式,并寫出自變量t的范圍.

【答案】分析:(1)先根據直線AC的解析式求出A、C兩點的坐標,然后根據A、B、C三點的坐標用待定系數(shù)法即可求出拋物線的解析式.
(2)根據拋物線的解析式可求出M點的坐標,由于四邊形OAMC不是規(guī)則的四邊形,因此可過M作x軸的垂線,將四邊形OAMC分成一個直角三角形和一個直角梯形來求解.
(3)①如果DE∥AC,此時點D,E應分別在線段OA,CA上,先求出這個區(qū)間t的取值范圍,然后根據平行線分線段成比例定理,求出此時t的值,然后看t的值是否符合此種情況下t的取值范圍.如果符合則這個t的值就是所求的值,如果不符合,那么就說明不存在這樣的t.
②本題要分三種情況進行討論:當E在OC上,D在OA上,即當0<t≤1時,此時S=OE•OD,由此可得出關于S,t的函數(shù)關系式;當E在CA上,D在OA上,即當1<t≤2時,此時S=OD×E點的縱坐標.由此可得出關于S,t的函數(shù)關系式;當E,D都在CA上時,即當2<t<相遇時用的時間,此時S=S△AOE-S△AOD,由此可得出S,t的函數(shù)關系式;綜上所述,可得出不同的t的取值范圍內,函數(shù)的不同表達式.
解答:解:(1)由題意知:拋物線y=ax2+bx+4經過A(3,0)、B(-1,0)
,
解得:
故所求的解析式為:;

(2)∵,
∴頂點M的坐標為,
如圖1,過點M作MF⊥x軸于點F,
則S四邊形AOCM=S△AFM+S梯形FOCM=,
即四邊形AOCM的面積為10.

(3)①不存在DE∥OC;
理由:如圖2,若DE∥OC,則點D、E應分別在線段OA、CA上,此時1<t<2,在Rt△AOC中,AC=5,
設點E的坐標為(x1,y1

∵|x1|=t,
∴t=
,不滿足1<t<2,
∴不存在DE∥OC,
②根據題意得出D,E兩點相遇的時間為=(秒),
現(xiàn)分情況討論:
當0<t≤1時,S=,
如圖3,當1<t≤2時,設點E的坐標為(x2,y2),
=,
故|y2|=,
S=,
③當2<t<,
如圖4,設點E的坐標為(x3,y3),類似②可得|y3|=,
設點D的坐標為(x4,y4),
=,
則|y4|=,
則S=S△AOE-S△AOD
=×3×-×3×
=-t+
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的應用等知識點,綜合性較強,注意分類討論,數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案