精英家教網 > 初中數學 > 題目詳情
如圖△ABC中,AC=BC,點D為BC邊上的一動點,DE⊥BA于E,連CE交AD于F,若DC=nBD.
①若n=2時,=______.
②若n=3時,求的值;
③若n=______
【答案】分析:①過點C作CH⊥AB于點H,由于DE⊥BA于E,所以DE∥CH,所以△BED∽△BHC,根據相似三角形的性質,可以求出的值.
②過點C作CH⊥AB于點H,交AD于點G,由(1)知,,由于DC=nBD且n=3,所以=,由于△AGH∽△ADE,所以,又因為△DEF∽△GCF,所以,所以=;
(3)過點C作CH⊥AB于點H,交AD于點G,由于△DEF∽△GCF,所以,由于EF=FC,所以DE=CG,設DE=CG=x,GH=y,
由△BED∽△BHC,得,即①,由△AGH∽△ADE,得,即②,聯(lián)立①②式,解得,
解答:解:(1)如圖,過點C作CH⊥AB于點H,
∵DE⊥BA于E,
∴DE∥CH,
∴△BED∽△BHC,

由于DC=nBD且n=2,
=,
∵CH⊥AB于點H,
∴BH=HA,
=

(2)如圖示,過點C作CH⊥AB于點H,交AD于點G,
由(1)知,,由于DC=nBD且n=3,∴=
同理,△AGH∽△ADE,∴
又△DEF∽△GCF,∴,即=;

(3)如圖示,過點C作CH⊥AB于點H,交AD于點G,
△DEF∽△GCF,∴,
由于EF=FC,所以DE=CG,
設DE=CG=x,GH=y,
由△BED∽△BHC,得,即①,
由△AGH∽△ADE,得,即②,
聯(lián)立①②式,解得,
點評:通過平行線證得三角形相似,能夠根據比例的性質進行比例式的靈活變形.熟悉相似三角形的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、如圖△ABC中,AC=14cm,DE為AB的垂直平分線,△ACD的周長為26cm,則BC的長
12
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖△ABC中,AC=BC,點D為BC邊上的一動點,DE⊥BA于E,連CE交A精英家教網D于F,若DC=nBD.
①若n=2時,
BE
AB
=
 

②若n=3時,求
EF
FC
的值;
③若n=
 
時,EF=FC.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖△ABC中,AC>AB,AB=4,AC=x,AD平分∠BAC,BD⊥AD于D,點E是BC的中點,DE=y,則y關于x的函數關系式為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖△ABC中,AC=6,BC=8,AB=10,D是AB邊上的中點,則CD的長為(  )

查看答案和解析>>

科目:初中數學 來源:2011―2012學年廣東汕頭潮南區(qū)(上)八年級第二次月考數學試卷(解析版) 題型:選擇題

如圖,△ABC中,AB=AC,D是BC中點,下列結論中不正確的是(    ) A、∠B=∠C   B、AD⊥BC    C、AD平分∠BAC   D、AB=2BD

 

查看答案和解析>>

同步練習冊答案