【題目】已知:在△ABC外分別以AB,AC為邊作△AEB與△AFC.
(1)如圖1,△AEB與△AFC分別是以AB,AC為斜邊的等腰直角三角形,連接EF.以EF為直角邊構(gòu)造Rt△EFG,且EF=FG,連接BG,CG,EC.
求證:①△AEF≌△CGF;②四邊形BGCE是平行四邊形.
(2)小明受到圖1的啟發(fā)做了進(jìn)一步探究:
如圖2,在△ABC外分別以AB,AC為斜邊作Rt△AEB與Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中點(diǎn)D,連接DE,EF后發(fā)現(xiàn),兩者間存在一定的數(shù)量關(guān)系且夾角度數(shù)一定,請(qǐng)你幫助小明求出的值及∠DEF的度數(shù).
(3)小穎受到啟發(fā)也做了探究:
如圖3,在△ABC外分別以AB,AC為底邊作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中點(diǎn)D,連接DE,EF后發(fā)現(xiàn),當(dāng)給定∠EAB=α時(shí),兩者間也存在一定的數(shù)量關(guān)系且夾角度數(shù)一定,若AE=m,AB=n,請(qǐng)你幫助小穎用含m,n的代數(shù)式直接寫出的值,并用含α的代數(shù)式直接表示∠DEF的度數(shù).
【答案】(1)①見解析;②見解析;(2)=;(3)cos∠DEF=.
【解析】
(1)①根據(jù)SAS即可證明三角形全等.
②想辦法證明BE=CG,BE∥CG即可.
(2)如圖2中,延長(zhǎng)ED到G,使得DG=ED,連接CG,FG.證明△CGF∽△AEF,推出,∠CFG=∠AFE,推出∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,推出tan∠DEF=,可得∠DEF=30°即可解決問題.
(3)如圖3中,延長(zhǎng)ED到G,使得DG=ED,連接CG,FG.作EH⊥AB于H,連接FD.想辦法證明∠AEH=∠DEF,利用勾股定理求出EH,即可解決問題.
(1)證明:①如圖1中,
∵△EFC與△AFC都是等腰直角三角形,
∴FA=FC,FE=FG,∠AFC=∠EFG=90°,
∴∠AFE=∠CFG,
∴△AFE≌△CFG(SAS).
②∵△AFE≌△CFG,
∴AE=CG,∠AEF=∠CGF,
∵△AEB是等腰直角三角形,
∴AE=BE,∠BEA=90°,
∴CG=BE,
∵△EFG是等腰直角三角形,
∴∠FEG=∠FGE=45°,
∴∠AEF+∠BEG=45°,
∵∠CGE+∠CGF=45°,
∴∠BEG=∠CGE,
∴BE∥CG,
∴四邊形BECG是平行四邊形.
(2)解:如圖2中,延長(zhǎng)ED到G,使得DG=ED,連接CG,FG.
∵點(diǎn)D是BC的中點(diǎn),
∴BD=CD,
∵∠EDB=∠GDC,
∴EB=GC,∠EBD=∠GCD,
在Rt△AEB與Rt△AFC中,
∵∠EAB=∠FAC=30°,
∴,,
∴,
∵∠EBD=∠2+60°,
∴∠DCG=∠2+60°,
∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3
=360°﹣120°﹣(∠2+∠3)
=360°﹣120°﹣(180°﹣∠1)
=60°+∠1,
∵∠EAF=30°+∠1+30°=60°+∠1,
∴∠GCF=∠EAF,
∴△CGF∽△AEF,
∴,∠CFG=∠AFE,
∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,
∴tan∠DEF=,
∴∠DEF=30°,
∴FG=EG,
∵ED=EG,
∴ED=FG,
∴.
(3)如圖3中,延長(zhǎng)ED到G,使得DG=ED,連接CG,FG.作EH⊥AB于H,連接FD.
∵BD=DC,∠BDE=∠CDG,DE=DG,
∴△CDG≌△BDE(SAS),
∴CG=BE=AE,∠DCG=∠DBE=α+∠ABC,
∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,
∴△EAF≌△GCF(SAS),
∴EF=GF,∠AFE=∠CFG,
∴∠AFC=∠EFC,
∴∠DEF=∠CAF=90°﹣α,
∵∠AEH=90°﹣α,
∴∠AEH=∠DEF,
∵AE=m,AH=AB=n,
∴EH=,
∵DE=DG,EF=GF,
∴DF⊥EG,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-(2k-1)x+k2,其中k是常數(shù).
(1)若該拋物線與x軸有交點(diǎn),求k的取值范圍;
(2)若此拋物線與x軸其中一個(gè)交點(diǎn)的坐標(biāo)為(-1,0),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,C、D是AB三等分點(diǎn),AB分別交OC、OD于點(diǎn)E、F,求證:AE=BF=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一紙板的形狀為正方形ABCD如圖所示.其邊長(zhǎng)為10厘米,AD、BC與投影面β平行,AB、CD與投影面不平行,正方形在投影面β上的正投影為A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤游戲時(shí),分別把轉(zhuǎn)盤A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時(shí),甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時(shí),乙獲勝.如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?若公平,請(qǐng)說明理由;若不公平,請(qǐng)你在轉(zhuǎn)盤A上只修改一個(gè)數(shù)字使游戲公平(不需要說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列給定的三點(diǎn)能確定一個(gè)圓的是( )
A. 線段的中點(diǎn)及兩個(gè)端點(diǎn)
B. 角的頂點(diǎn)及角的邊上的兩點(diǎn)
C. 三角形的三個(gè)頂點(diǎn)
D. 矩形的對(duì)角線交點(diǎn)及兩個(gè)頂點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為3元/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤(rùn)為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、圖2、圖3、…、圖n分別是⊙O的內(nèi)接正三角形ABC,正四邊形ABCD、正五邊形ABCDE、…、正n邊形ABCD…,點(diǎn)M、N分別從點(diǎn)B、C開始以相同的速度在⊙O上逆時(shí)針運(yùn)動(dòng)。
(1)求圖1中∠APN的度數(shù);
(2)圖2中,∠APN的度數(shù)是_______,圖3中∠APN的度數(shù)是________。
(3)試探索∠APN的度數(shù)與正多邊形邊數(shù)n的關(guān)系(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在11×11的正方形網(wǎng)格中,△TAB的頂點(diǎn)分別為T(1,1),A(2,3),B(4,2).
(1)以點(diǎn)T(1,1)為位似中心,按比例尺(TA′:TA)3:1,在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A′,B′,畫出△TA′B′,并寫出點(diǎn)A′,B′的坐標(biāo);點(diǎn)A′的坐標(biāo)為 ,點(diǎn)B′的坐標(biāo)為
(2)在(1)中,若C(a,b)為線段AB上任一點(diǎn),寫出變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com