精英家教網(wǎng)拋擲一枚均勻的正四面體骰子(如圖,它有四個頂點,各頂點分別代表的點數(shù)是1、2、3、4),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標(biāo)系中點P的坐標(biāo)(第一次的點數(shù)為橫坐標(biāo),第二次的點數(shù)為縱坐標(biāo)).則點P在反比例函數(shù)y=
4x
圖象上的概率是
 
分析:總共有4×4=16種可能,在反比例函數(shù)圖象上的有(1,4)(2,2),(4,1)三種情況.求出后者與前者之比即可.
解答:解:點P在反比例函數(shù)y=
4
x
圖象上的概率是
3
16

故答案為:
3
16
點評:本題考查的是概率的公式.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
m
n
.反比例函數(shù)上的點的橫縱坐標(biāo)的積為反比例函數(shù)的比例系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)拋擲一枚均勻的正四面體骰子(如圖,它有四個頂點,各頂點分別代表的點數(shù)是1、2、3、4).每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標(biāo)系中點P的坐標(biāo)(第一次的點數(shù)為橫坐標(biāo),第二次的點數(shù)為縱坐標(biāo)).則點P在反比例函數(shù)y=
6x
圖象上的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,放在平面直角坐標(biāo)系中的正方形ABCD的邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(如圖,它有四個頂點,各頂點數(shù)分別是1、2、3、4),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標(biāo)系中點P的坐標(biāo)(第一次的點數(shù)為橫坐標(biāo),第二次的點數(shù)為縱坐標(biāo)).
(1)求點P落在正方形面上(含邊界,下同)的概率;
(2)將正方形ABCD平移數(shù)個單位,是否存在一種平移,使點P落在正精英家教網(wǎng)方形面上的概率為
14
?若存在,指出其中的一種平移方式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(一)如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標(biāo)系中P點的坐標(biāo)(第一次的點數(shù)作橫坐標(biāo),第二次的點數(shù)作縱坐標(biāo)).
(1)求P點落在正方形ABCD面上(含正方形內(nèi)和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為
34
?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標(biāo)有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,放在直角坐標(biāo)系中的正方形ABCD邊長為4,現(xiàn)做如下實驗:拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點數(shù)作為直角坐標(biāo)中P點的坐標(biāo))第一次的點數(shù)作橫坐標(biāo),第二次的點數(shù)作縱坐標(biāo)).
(1)求P點落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD
面上的概率為
34
;若存在,指出其中的一種平移方式;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案