【題目】若拋物線(xiàn)L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線(xiàn)l都經(jīng)過(guò)y軸上的同一點(diǎn),且拋物線(xiàn)L的頂點(diǎn)在直線(xiàn)l上,則稱(chēng)次拋物線(xiàn)L與直線(xiàn)l具有“一帶一路”關(guān)系,并且將直線(xiàn)l叫做拋物線(xiàn)L的“路線(xiàn)”,拋物線(xiàn)L叫做直線(xiàn)l的“帶線(xiàn)”.
(1)若“路線(xiàn)”l的表達(dá)式為y=2x﹣4,它的“帶線(xiàn)”L的頂點(diǎn)的橫坐標(biāo)為﹣1,求“帶線(xiàn)”L的表達(dá)式;
(2)如果拋物線(xiàn)y=mx2﹣2mx+m﹣1與直線(xiàn)y=nx+1具有“一帶一路”關(guān)系,求m,n的值;
(3)設(shè)(2)中的“帶線(xiàn)”L與它的“路線(xiàn)”l在y軸上的交點(diǎn)為A.已知點(diǎn)P為“帶線(xiàn)”L上的點(diǎn),當(dāng)以點(diǎn)P為圓心的圓與“路線(xiàn)”l相切于點(diǎn)A時(shí),求出點(diǎn)P的坐標(biāo).
【答案】(1)“帶線(xiàn)”L的表達(dá)式為y=2x2+4x﹣4;(2)m=2,n=﹣2;(3)點(diǎn)P的坐標(biāo)為(, ).
【解析】試題分析:
(1)由“路線(xiàn)l”的表達(dá)式為:y=2x-4可得,“路線(xiàn)l”與y軸交于點(diǎn)(0,-4);把x=-1代入y=2x-4可得y=-6,由此可得“帶線(xiàn)L”的頂點(diǎn)坐標(biāo)為(-1,-6),結(jié)合“帶線(xiàn)L”過(guò)點(diǎn)(0,-4)即可求得“帶線(xiàn)L”的解析式;
(2)由y=mx2﹣2mx+m﹣1=m(m-1)2-1可得“帶線(xiàn)L”的頂點(diǎn)坐標(biāo)為(1,-1),與y軸交于點(diǎn)(0,m-1),把這兩個(gè)點(diǎn)的坐標(biāo)代入y=nx+1即可求得m、n的值;
(3)如圖,由(2)可知,若設(shè)“帶線(xiàn)L”的頂點(diǎn)為B,則點(diǎn)B坐標(biāo)為(1,﹣1),過(guò)點(diǎn)B作BC⊥y軸于點(diǎn)C,連接PA并延長(zhǎng)交x軸于點(diǎn)D,由⊙P與“路線(xiàn)”l相切于點(diǎn)A可得PD⊥l于點(diǎn)A,由此證Rt△AOD≌Rt△BCA即可求得點(diǎn)D的坐標(biāo),結(jié)合點(diǎn)A的坐標(biāo)即可求得AD的解析式為y=x+1,由AD的解析式和“帶線(xiàn)L”的解析式組成方程組,解方程組即可求得點(diǎn)P的坐標(biāo).
試題解析:
((1)∵“帶線(xiàn)”L的頂點(diǎn)橫坐標(biāo)是﹣1,且它的“路線(xiàn)”l的表達(dá)式為y=2x﹣4
∴y=2×(﹣1)﹣4=﹣6,
∴“帶線(xiàn)”L的頂點(diǎn)坐標(biāo)為(﹣1,﹣6).
設(shè)L的表達(dá)式為y=a(x+1)2﹣6,
∵“路線(xiàn)”y=2x﹣4與y軸的交點(diǎn)坐標(biāo)為(0,﹣4)
∴“帶線(xiàn)”L也經(jīng)過(guò)點(diǎn)(0,﹣4),將(0,﹣4)代入L的表達(dá)式,解得a=2
∴“帶線(xiàn)”L的表達(dá)式為 y=2(x+1)2﹣6=2x2+4x﹣4;
(2)∵直線(xiàn)y=nx+1與y軸的交點(diǎn)坐標(biāo)為(0,1),
∴拋物線(xiàn)y=mx2﹣2mx+m﹣1與y軸的交點(diǎn)坐標(biāo)也為(0,1),解得m=2,
∴拋物線(xiàn)表達(dá)式為y=2x2﹣4x+1,其頂點(diǎn)坐標(biāo)為(1,﹣1)
∴直線(xiàn)y=nx+1經(jīng)過(guò)點(diǎn)(1,﹣1),解得n=﹣2;
(3)如圖,設(shè)“帶線(xiàn)L”的頂點(diǎn)為B,則點(diǎn)B坐標(biāo)為(1,﹣1),過(guò)點(diǎn)B作BC⊥y軸于點(diǎn)C,
∴∠BCA=90°,
又∵點(diǎn)A 坐標(biāo)為(0,1),
∴AO=1,BC=1,AC=2.
∵“路線(xiàn)”l是經(jīng)過(guò)點(diǎn)A、B的直線(xiàn)
且⊙P與“路線(xiàn)”l相切于點(diǎn)A,連接PA交 x軸于點(diǎn)D,
∴PA⊥AB,
∴∠DAB=∠AOD=90°,
∴∠ADO+∠DAO=90°,
又∵∠DAO+∠BAC=90°,
∴∠ADO=∠BAC,
∴Rt△AOD≌Rt△BCA,
∴OD=AC=2,
∴D點(diǎn)坐標(biāo)為(﹣2,0)
∴經(jīng)過(guò)點(diǎn)D、A的直線(xiàn)表達(dá)式為y=x+1,
∵點(diǎn)P為直線(xiàn)y=x+1與拋物線(xiàn)L:y=2x2﹣4x+1的交點(diǎn),
解方程組: 得 : (即點(diǎn)A舍去), ,
∴點(diǎn)P的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)分別為H、G,直線(xiàn)HG交OA、OB于點(diǎn)C、D,若∠HOG=80°,則∠CPD=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 AD 為△ABC 的高線(xiàn),AD=BC,以 AB 為底邊作等腰 Rt△ABE,連接 ED, EC,延長(zhǎng)CE 交AD 于F 點(diǎn),下列結(jié)論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( )
A. ①③B. ①②④C. ①②③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分8分)某廠(chǎng)制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個(gè)數(shù)比制成乙盒的個(gè)數(shù)少2個(gè),且制成一個(gè)甲盒比制作一個(gè)乙盒需要多用20%的材料。
(1)求制作每個(gè)甲盒、乙盒各用多少材料?
(2)如果制作甲、乙兩種包裝盒3000個(gè),且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請(qǐng)寫(xiě)出所需材料總長(zhǎng)度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分)
問(wèn)題提出:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
問(wèn)題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過(guò)試驗(yàn)、觀(guān)察、類(lèi)比,最后歸納、猜測(cè)得出結(jié)論.
探究一:
用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),
用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當(dāng)時(shí),
用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當(dāng)時(shí),
用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當(dāng)時(shí),
綜上所述,可得表①
3 | 4 | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫(xiě)出解答過(guò)程,并把結(jié)果填在表②中)
分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……
解決問(wèn)題:用根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
(設(shè)分別等于、、、,其中是整數(shù),把結(jié)果填在表③中)
問(wèn)題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(要求寫(xiě)出解答過(guò)程)
其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線(xiàn)上的兩點(diǎn).若AE= ,∠EAF=135°,則以下結(jié)論正確的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C任作一射線(xiàn)CM,交AB于M,分別過(guò)A,B作AE⊥CM,BF⊥CM,垂足分別為E,F.
(1)求證:∠ACE=∠CBF;
(2)求證:AE=CF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿(mǎn)分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院辦公廳在2015年3月16日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com