直線y=﹣x+6與坐標(biāo)軸分別交于A、B兩點,動點P、Q同時從O點出發(fā),同時到達(dá)A點,運動停止.點Q沿線段OA運動,速度為每秒1個單位長度,點P沿路線O→B→A運動.
(1)直接寫出A、B兩點的坐標(biāo);
(2)設(shè)點Q的運動時間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)S=時,求出點P的坐標(biāo),并直接寫出以點O、P、Q為頂點的平行四邊形的第四個頂點M的坐標(biāo).
(1)A(8,0),B(0,6);
(2)S=﹣t2+t;
(3)M1(,),M2(﹣,),M3(,﹣).
解析試題分析:(1)分別令y=0,x=0,即可求出A、B的坐標(biāo);
(2)因為OA=8,OB=6,利用勾股定理可得AB=10,進(jìn)而可求出點Q由O到A的時間是8秒,點P的速度是2,從而可求出,當(dāng)P在線段OB上運動(或0≤t≤3)時,OQ=t,OP=2t,S=t2,當(dāng)P在線段BA上運動(或3<t≤8)時,OQ=t,AP=6+10﹣2t=16﹣2t,作PD⊥OA于點D,由相似三角形的性質(zhì),得,利用S=OQ×PD,即可求出答案;
(3)令S=,求出t的值,進(jìn)而求出OD、PD,即可求出P的坐標(biāo),利用平行四邊形的對邊平行且相等,結(jié)合簡單的計算即可寫出M的坐標(biāo).
試題解析:(1)y=0,x=0,求得A(8,0),B(0,6);
(2)∵OA=8,OB=6,
∴AB=10.
∵點Q由O到A的時間是8(秒),
∴點P的速度是(6+10)÷8=2.
當(dāng)P在線段OB上運動(或O≤t≤3)時,
OQ=t,OP=2t,S=t2.
當(dāng)P在線段BA上運動(或3<t≤8)時,
OQ=t,AP=6+10﹣2t=16﹣2t,
如圖,過點P作PD⊥OA于點D,
由,得PD=.
∴S=OQ•PD=﹣t2+t;
(3)當(dāng)S=時,
∵>×3×6,∴點P在AB上
當(dāng)S=時,﹣t2+t =
∴t=4
∴PD==,AP=16﹣2×4=8
AD=
∴OD=8﹣=,
∴P(,)
M1(,),M2(﹣,),M3(,﹣).
考點:一次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示。
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求李明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;
(3)試比較第10天與第12天的銷售金額哪天多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某校校長暑假帶領(lǐng)該市市級“三好學(xué)生”去北京旅游.甲旅行社說:“如果校長買全票一張,則其余學(xué)生可享受半價優(yōu)惠.”乙旅行社說:“包括校長在內(nèi)的全部按全票價的6折優(yōu)惠”(即按全票的60%收費).若全票價為240元/人,
(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費為y甲,乙旅行社收費為y乙,分別計算兩家旅行社的收費(建立表達(dá)式).
(2)當(dāng)學(xué)生人數(shù)為多少時,兩家旅行社的收費一樣?
(3)就學(xué)生人數(shù)討論哪家旅行社更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了考察冰川融化的狀況,一支科考隊在某冰川上設(shè)一定一個以大本營O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動.若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是.以O(shè)為原點,建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別是(–4,9)、(–13,–3).
(1)求線段P1P2所在的直線對應(yīng)的函數(shù)關(guān)系式;
(2)求冰川的邊界線移動到考察區(qū)域所需要的最短時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1•k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
反比例函數(shù)在第二象限的圖象如圖所示.
(1)直接寫出m的取值范圍;
(2)若一次函數(shù)的圖象與上述反比例函數(shù)圖象交于點A,與x軸交于點B,△AOB的面積為,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩車分別從A地將一批物品運往B地,再返回A地,如圖表示兩車離A地的距離s(千米)隨時間t(小時)變化的圖象,已知乙車到達(dá)B地后以30千米/小時的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:
(1)甲車出發(fā)多長時間后被乙車追上?
(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?
(3)甲車從B地返回的速度多大時,才能比乙車先回到A地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:計算題
已知一次函數(shù)的圖象與反比例函數(shù)圖象交于點 P(4,n)。
【小題1】求P點坐標(biāo)
【小題2】求一次函數(shù)的解析式
【小題3】若點A(,),B(,)在上述一次函數(shù)的圖象上,且,試比較、 的大小,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com