精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD的邊長為3cm,∠ABE=,且AB=AE,則DE的長度為(

A. 3 B. 4 C. 5 D. 6

【答案】A

【解析】

根據∠ABE=15°,AB=AE,易得∠AEB=ABE=15°,再根據ADBC,可得∠EBC=75°,∠AFE=105°,∠DAE=60°,進而可得ADE=AED=60°,故△ADE是等邊三角形,由等邊三角形的性質可得DE的長.

如圖:ADBE于點F,∵∠ABE=15°,AB=AE

∴∠AEB=ABE=15°

∴∠EFD=AFB=90°15°=75°

故∠AFE=180°75°=105°

∴∠DAE=180°105°15°=60°

又∵AB=AE

△ADE是等邊三角形,

所以DE=AD=3cm.

故選:A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一黃金周期間,某景點門票價格為:成人票每張80元,兒童票每張20元,甲旅行團有x名成人和y名兒童;乙旅行團的成人數是甲旅行團的2倍,兒童數是甲旅行團的

1)甲、乙兩個旅行團在該景點的門票費用分別為:甲   元;乙   元;(用含x、y的代數式表示)

2)若x10,y6,求兩個旅行團門票費用的總和.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是O的直徑,AF是O切線,CD是垂直于AB的弦,垂足為E,過點C作DA的平行線與AF相交于點F,CD=,BE=2.

求證:(1)四邊形FADC是菱形;

(2)FC是O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【問題學習】小蕓在小組學習時問小娟這樣一個問題:已知α為銳角,且sin α=,求sin 2α的值.

小娟是這樣給小蕓講解的:

如圖①,在⊙O中,AB是直徑,點C在⊙O上,所以∠ACB=90°. 設∠BAC=α,則sin α=.易得∠BOC=2α.BC=x,則AB=3x,AC=2 x.CDABD,求出CD=________(用含x的式子表示),可求得sin 2α==________.

【問題解決】已知,如圖②,點M,N,P為⊙O上的三點,且∠P=β,sin β=,求sin 2β的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=60cm,∠A=30°,點D從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,同時點E從點B出發(fā)沿BC方向以1cm/秒的速度向點C勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0t≤30).過點DDFAC于點F,連接DE,EF

1)填空:四邊形BEFD_________

2)當t=______時,四邊形BEFD能夠成為菱形。

3)當t為何值時?△DEF為直角三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:

為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個整體,然后設x2﹣1=y,則原方程化為y2﹣5y+4=0,解此方程得:y1=1,y2=4.

y=1時,x2﹣1═1x=±

y=4時,x2﹣1═4,x=±

∴原方程的解為:x1=,x2=﹣,x3=,x4=﹣

以上方法叫做換元法解方程,達到了降次的目的,體現了轉化思想.

運用上述方法解方程:x4﹣8x2+12=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個玩具火車軌道,A點有個變軌開關,可以連接BC.小圈軌道的周長是1.5米,大圈軌道的周長是3米.開始時,A連接C,火車從A點出發(fā),按照順時針方向再軌道上移動,同時變軌開關每隔一分鐘變換一次軌道連接.若火車的速度是每分鐘10米,則火車第10次回到A點時用了______分鐘.

查看答案和解析>>

同步練習冊答案