如圖,直線與x軸、y軸分別交于點(diǎn)A、C,經(jīng)過(guò)A、C兩點(diǎn)的拋物線
與x軸的負(fù)半軸上另一交點(diǎn)為B,且tan∠CBO=3.
(1)求該拋物線的解析式及拋物線的頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是射線BD上一點(diǎn),且以點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).
(1),D(-2,-1)(2)P的坐標(biāo)為(
)或(
).
【解析】
試題分析:(1)由直線可求得A、C的坐標(biāo),再由tan∠CBO=3,可求得B的坐標(biāo),用交點(diǎn)式可以求出拋物線解析式,通過(guò)配方即可求出頂點(diǎn)D的坐標(biāo);
(2)過(guò)D作DE⊥AB于E,可以得到∠CAO=∠ABD=45°,直線BD的方程為:,表示出PB的長(zhǎng),因?yàn)橛幸粚?duì)角相等,所以只需要夾這個(gè)角的兩邊對(duì)應(yīng)成比例,即可得到三角形相似,所以有兩種情況:
和
,分別求出PB,再求出P的坐標(biāo)即可.
試題解析:(1)連結(jié)BC,由直線知,點(diǎn)A(-3,0)、C(0,3);∴OC=3,∵tan∠CBO=3,∴OB=1,∴B(-1,0);設(shè)
,把C(0,3)代入得:
,解得:
,∴
,∵
,∴頂點(diǎn)D(
);
(2)過(guò)D作DE⊥AB于E,∵D (),B(-1,0),∴DE=1,BE=1,∴∠ABD=45°,∵A(-3,0)、C(0,3),∴OA=OC=3,∴∠CAO=45°,AO=CO=3,∴AC=
,∴∠CAO=∠ABD.設(shè)直線BD為
,把D (
),B(-1,0)代入得:
,解得:
,∴直線BD為
.
∵點(diǎn)P在射線BD上,∴設(shè)P()且
,則PB=
,∵
,∴PB=
,∵∠CAO=∠ABD,∴有以下兩種情況,可以使以點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似:
①當(dāng)時(shí),即
,解得:
,∴
,∴P(
);
②當(dāng)時(shí),即
,解得:
,∴
,∴P(
);
∴點(diǎn)P的坐標(biāo)為()或(
).
考點(diǎn):1.二次函數(shù)綜合題;2.代數(shù)幾何綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2x |
1 |
2x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011屆寧夏銀川市初三上學(xué)期期末數(shù)學(xué)卷 題型:解答題
如圖①,直線與x軸、y軸分別交于B、C兩點(diǎn),點(diǎn)A在x軸負(fù)半軸上,且
,拋物線經(jīng)過(guò)A、B、C三點(diǎn),D為線段AB中點(diǎn),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n<0),連接DP交BC于點(diǎn)E.
(1)寫(xiě)出A、B、C三點(diǎn)的坐標(biāo),并求拋物線的解析式;(5分)
(2) 當(dāng)△BDE是等腰三角形時(shí),直接寫(xiě)出此時(shí)點(diǎn)E的坐標(biāo);(3分)
(3)連結(jié)PC、PB,△PBC是否有最大面積?若有,求出△PBC的最大面積和此時(shí)P點(diǎn)的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由。(3分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com