【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

【答案】
(1)證明:在平行四邊形ABCD中,AD∥BC,

∴∠AEB=∠EAD,

∵AE=AB,

∴∠ABE=∠AEB,

∴∠ABE=∠EAD;


(2)證明:∵AD∥BC,

∴∠ADB=∠DBE,

∵∠ABE=∠AEB,∠AEB=2∠ADB,

∴∠ABE=2∠ADB,

∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,

∴AB=AD,

又∵四邊形ABCD是平行四邊形,

∴四邊形ABCD是菱形


【解析】(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證;(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,ADBC,點(diǎn)EAC的垂直平分線上,BD=DE.

(1)如果ABC的周長為14cm,AC=6cm,那么ABE的周長=____;

(2)你發(fā)現(xiàn)線段ABBD的和等于圖中哪條線段的長?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)A向右移動1個單位得到點(diǎn)B,點(diǎn)B向右移動(n+1)(n為正整數(shù))個單位得到點(diǎn)C,點(diǎn)A、B、C分別表示有理數(shù)ab、c

1)當(dāng)n=1時,A、BC三點(diǎn)在數(shù)軸上的位置如圖所示,ab、c三個數(shù)的乘積為正數(shù).

①數(shù)軸上原點(diǎn)的位置可能(

A.在點(diǎn)A左側(cè)或在A、B兩點(diǎn)之間

B.在點(diǎn)C右側(cè)或在AB兩點(diǎn)之間

C.在點(diǎn)A左側(cè)或在B、C兩點(diǎn)之間

D.在點(diǎn)C右側(cè)或在BC兩點(diǎn)之間

②若這三個數(shù)的和與其中的一個數(shù)相等,則a=_________(簡述理由)

2)將點(diǎn)C向右移動(n+2)個單位得到點(diǎn)D,點(diǎn)D表示有理數(shù)da、bc、d四個數(shù)的積為正數(shù),且這四個數(shù)的和與其中的兩個數(shù)的和相等,a為整數(shù),若n分別取1,23,,100時,對應(yīng)的a的值分別記為,,,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是ACAB上的點(diǎn),BDCE相交于點(diǎn)O,給出下列四個條件:

①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC

1)上述四個條件中,由哪兩個條件可以判定AB=AC?(用序號寫出所有的情形)

2)選擇(1)小題中的一種情形,說明AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是線段AB上兩點(diǎn),已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點(diǎn),且AB=12cm,

(1)求線段CD的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價都是20/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標(biāo)價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標(biāo)價的九折出售.

(1)若設(shè)莉莉要購買xx>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費(fèi)用;

(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費(fèi)用與到甲文具店購買全部筆記本所需的費(fèi)用相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為正方形ABCD的中心,M為射線OD上一動點(diǎn)(M與點(diǎn)O,D不重合),以線段AM為一邊作正方形AMEF,連接FD.
(1)當(dāng)點(diǎn)M在線段OD上時(如圖1),線段BM與DF有怎樣的數(shù)量及位置關(guān)系?請說明理由;
(2)當(dāng)點(diǎn)M在線段OD的延長線上時(如圖2),(1)中的結(jié)論是否仍然成立?請結(jié)合圖2說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,點(diǎn)B經(jīng)軸對稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:若|x|=2,|y|=3求x+y的值.

情況若x=2,y=3時,x+y=5

情況若x=2,y=﹣3時,x+y=﹣1

情況若x=﹣2,y=3時,x+y=1

情況若x=﹣2,y=﹣3時,x+y=﹣5

所以,x+y的值為1,﹣1,5,﹣5.

幾何的學(xué)習(xí)過程中也有類似的情況:

問題(1):已知點(diǎn)A,B,C在一條直線上,若AB=8,BC=3,則AC長為多少?

通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種

情況當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時,如圖1,此時,AC=   

情況當(dāng)點(diǎn)C在點(diǎn)B的左側(cè)時,如圖2,此時,AC=   

通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進(jìn)行分類.

問題(2):如圖3,數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)分別是﹣1和2,點(diǎn)C是數(shù)軸上一點(diǎn),且BC=2AB,則點(diǎn)C表示的數(shù)是多少?

仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.

問題(3):點(diǎn)O是直線AB上一點(diǎn),以O(shè)為端點(diǎn)作射線OC、OD,使AOC=60°,OCOD,求BOD的度數(shù).畫出圖形,直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案