【題目】如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M是x軸下方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN⊥x軸,交直線(xiàn)BC于點(diǎn)N,求四邊形MBNA的最大面積,并求出點(diǎn)M的坐標(biāo);
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△BCP為直角三角形?若存在,求出P點(diǎn)坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:設(shè)拋物線(xiàn)解析式為y=a(x﹣1)(x﹣3),

把C(0,3)代入得a(﹣1)(﹣3)=3,解得a=3,

∴拋物線(xiàn)解析式為y=(x﹣1)(x﹣3),即y=x2﹣4x+3


(2)

解:如圖1,設(shè)直線(xiàn)BC的解析式為y=kx+b,

把C(0,3),B(3,0)代入得 ,解得

∴直線(xiàn)BC的解析式為y=﹣x+3,

設(shè)M(x,x2﹣4x+3)(1<x<3),則N(x,﹣x+3),

∴MN=﹣x+3﹣(x2﹣4x+3)=﹣x2+5x,

∴四邊形MBNA的面積=SABM+SABN= ABMN= 2(﹣x2+5x)=﹣x2+5x=﹣(x﹣ 2+ ,

當(dāng)x= 時(shí),四邊形MBNA的面積最大,最大值為


(3)

解:存在.

∵OB=OC,

∴△OBC為等腰直角三角形,

∴∠OBC=∠OCB=45°,

過(guò)B點(diǎn)作PB⊥BC交拋物線(xiàn)于P點(diǎn),交y軸于Q點(diǎn),如圖2,則∠CBQ=90°,

∵∠OBQ=45°,

∴△OBQ為等腰直角三角形,

∴OQ=OB=3,

∴Q(0,﹣3),

易得直線(xiàn)BQ的解析式為y=x﹣3,

解方程組 ,此時(shí)P點(diǎn)坐標(biāo)為(2,﹣1);

過(guò)C點(diǎn)作PC⊥BC交拋物線(xiàn)于P點(diǎn),如圖3,則∠PCB=90°,

易得直線(xiàn)CQ的解析式為y=x+3,

解方程組 ,此時(shí)P點(diǎn)坐標(biāo)為(5,8);

當(dāng)∠BPC=90°時(shí),如圖4,作PH⊥y軸于H,BF⊥PH于F,

設(shè)P(t,t2﹣4t+3),

易證得△CPH∽△PBF,

= ,即 = ,

= ,

整理得t2﹣5t+5=0,解得t1= ,t2= ,此時(shí)P點(diǎn)坐標(biāo)為( )或( , ),

綜上所述,滿(mǎn)足條件的P點(diǎn)坐標(biāo)為(2,﹣1),(5,8),( ),( , ).


【解析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x﹣1)(x﹣3),然后把C點(diǎn)坐標(biāo)代入求出a即可;(2)如圖1,先利用待定系數(shù)法求出直線(xiàn)BC的解析式為y=﹣x+3,設(shè)M(x,x2﹣4x+3)(1<x<3),則N(x,﹣x+3),則MN=﹣x2+5x,利用三角形面積公式得到四邊形MBNA的面積= ABMN= 2(﹣x2+5x),然后根據(jù)二次函數(shù)的性質(zhì)解決問(wèn)題;(3)先判斷△OBC為等腰直角三角形得到∠OBC=∠OCB=45°,討論:過(guò)B點(diǎn)作PB⊥BC交拋物線(xiàn)于P點(diǎn),交y軸于Q點(diǎn),如圖2,則∠CBQ=90°,判斷△OBQ為等腰直角三角形得到OQ=OB=3,則Q(0,﹣3),易得直線(xiàn)BQ的解析式為y=x﹣3,通過(guò)解方程組 得此時(shí)P點(diǎn)坐標(biāo);過(guò)C點(diǎn)作PC⊥BC交拋物線(xiàn)于P點(diǎn),如圖3,則∠PCB=90°,同樣方法可得易此時(shí)P點(diǎn)坐標(biāo);當(dāng)∠BPC=90°時(shí),如圖4,作PH⊥y軸于H,BF⊥PH于F,設(shè)P(t,t2﹣4t+3),易證得△CPH∽△PBF,利用相似比得到 = ,于是通過(guò)約分整理得到t2﹣5t+5=0,然后解方程求出t即可得到此時(shí)P點(diǎn)坐標(biāo).
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+6x+c(a≠0)交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,﹣5),點(diǎn)B的坐標(biāo)為(1,0).

(1)求此拋物線(xiàn)的解析式及定點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)B作線(xiàn)段AB的垂線(xiàn)交拋物線(xiàn)于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線(xiàn)BD相切,請(qǐng)判斷拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C的位置關(guān)系,并說(shuō)明理由;
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)、相交于點(diǎn)平分,平分,

的度數(shù);

的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解同學(xué)們每月零花錢(qián)的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表:

調(diào)查結(jié)果統(tǒng)計(jì)表

調(diào)查結(jié)果頻數(shù)分布直方圖 調(diào)查結(jié)果扇形統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上圖表,解答下列問(wèn)題:

(1)填空:這次調(diào)查的樣本容量是 , ,

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)求扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);

(4)該校共有人,請(qǐng)估計(jì)每月零花錢(qián)的數(shù)額范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問(wèn)題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABD中,AB=AD, ABD沿BD翻折,使點(diǎn)A翻折到點(diǎn)C. EBD上一點(diǎn),且BE>DE,連結(jié)CE并延長(zhǎng)交ADF,連結(jié)AE.

(1)依題意補(bǔ)全圖形;

(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;

(3)若∠BAD=120°,AB=2,取AD的中點(diǎn)G,連結(jié)EG,求EA+EG的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知AOB=140°,∠AOC=30°,OEAOB內(nèi)部的一條射線(xiàn),且OF平分AOE

(1)若EOB=30°,則COF= ;

(2)若COF=20°,則EOB= ;

(3)若COF=n°,則EOB= (用含n的式子表示).

(4)當(dāng)射線(xiàn)OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),請(qǐng)把圖補(bǔ)充完整;此時(shí),COFEOB有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案