【題目】如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M是x軸下方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN⊥x軸,交直線(xiàn)BC于點(diǎn)N,求四邊形MBNA的最大面積,并求出點(diǎn)M的坐標(biāo);
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△BCP為直角三角形?若存在,求出P點(diǎn)坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:設(shè)拋物線(xiàn)解析式為y=a(x﹣1)(x﹣3),
把C(0,3)代入得a(﹣1)(﹣3)=3,解得a=3,
∴拋物線(xiàn)解析式為y=(x﹣1)(x﹣3),即y=x2﹣4x+3
(2)
解:如圖1,設(shè)直線(xiàn)BC的解析式為y=kx+b,
把C(0,3),B(3,0)代入得 ,解得 ,
∴直線(xiàn)BC的解析式為y=﹣x+3,
設(shè)M(x,x2﹣4x+3)(1<x<3),則N(x,﹣x+3),
∴MN=﹣x+3﹣(x2﹣4x+3)=﹣x2+5x,
∴四邊形MBNA的面積=S△ABM+S△ABN= ABMN= 2(﹣x2+5x)=﹣x2+5x=﹣(x﹣ )2+ ,
當(dāng)x= 時(shí),四邊形MBNA的面積最大,最大值為 ;
(3)
解:存在.
∵OB=OC,
∴△OBC為等腰直角三角形,
∴∠OBC=∠OCB=45°,
過(guò)B點(diǎn)作PB⊥BC交拋物線(xiàn)于P點(diǎn),交y軸于Q點(diǎn),如圖2,則∠CBQ=90°,
∵∠OBQ=45°,
∴△OBQ為等腰直角三角形,
∴OQ=OB=3,
∴Q(0,﹣3),
易得直線(xiàn)BQ的解析式為y=x﹣3,
解方程組 得 或 ,此時(shí)P點(diǎn)坐標(biāo)為(2,﹣1);
過(guò)C點(diǎn)作PC⊥BC交拋物線(xiàn)于P點(diǎn),如圖3,則∠PCB=90°,
易得直線(xiàn)CQ的解析式為y=x+3,
解方程組 得 或 ,此時(shí)P點(diǎn)坐標(biāo)為(5,8);
當(dāng)∠BPC=90°時(shí),如圖4,作PH⊥y軸于H,BF⊥PH于F,
設(shè)P(t,t2﹣4t+3),
易證得△CPH∽△PBF,
∴ = ,即 = ,
∴ = ,
整理得t2﹣5t+5=0,解得t1= ,t2= ,此時(shí)P點(diǎn)坐標(biāo)為( , )或( , ),
綜上所述,滿(mǎn)足條件的P點(diǎn)坐標(biāo)為(2,﹣1),(5,8),( , ),( , ).
【解析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x﹣1)(x﹣3),然后把C點(diǎn)坐標(biāo)代入求出a即可;(2)如圖1,先利用待定系數(shù)法求出直線(xiàn)BC的解析式為y=﹣x+3,設(shè)M(x,x2﹣4x+3)(1<x<3),則N(x,﹣x+3),則MN=﹣x2+5x,利用三角形面積公式得到四邊形MBNA的面積= ABMN= 2(﹣x2+5x),然后根據(jù)二次函數(shù)的性質(zhì)解決問(wèn)題;(3)先判斷△OBC為等腰直角三角形得到∠OBC=∠OCB=45°,討論:過(guò)B點(diǎn)作PB⊥BC交拋物線(xiàn)于P點(diǎn),交y軸于Q點(diǎn),如圖2,則∠CBQ=90°,判斷△OBQ為等腰直角三角形得到OQ=OB=3,則Q(0,﹣3),易得直線(xiàn)BQ的解析式為y=x﹣3,通過(guò)解方程組 得此時(shí)P點(diǎn)坐標(biāo);過(guò)C點(diǎn)作PC⊥BC交拋物線(xiàn)于P點(diǎn),如圖3,則∠PCB=90°,同樣方法可得易此時(shí)P點(diǎn)坐標(biāo);當(dāng)∠BPC=90°時(shí),如圖4,作PH⊥y軸于H,BF⊥PH于F,設(shè)P(t,t2﹣4t+3),易證得△CPH∽△PBF,利用相似比得到 = ,于是通過(guò)約分整理得到t2﹣5t+5=0,然后解方程求出t即可得到此時(shí)P點(diǎn)坐標(biāo).
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+6x+c(a≠0)交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,﹣5),點(diǎn)B的坐標(biāo)為(1,0).
(1)求此拋物線(xiàn)的解析式及定點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)B作線(xiàn)段AB的垂線(xiàn)交拋物線(xiàn)于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線(xiàn)BD相切,請(qǐng)判斷拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C的位置關(guān)系,并說(shuō)明理由;
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解同學(xué)們每月零花錢(qián)的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
調(diào)查結(jié)果統(tǒng)計(jì)表
調(diào)查結(jié)果頻數(shù)分布直方圖 調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
請(qǐng)根據(jù)以上圖表,解答下列問(wèn)題:
(1)填空:這次調(diào)查的樣本容量是 , , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)求扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);
(4)該校共有人,請(qǐng)估計(jì)每月零花錢(qián)的數(shù)額在范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問(wèn)題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點(diǎn)A翻折到點(diǎn)C. E是BD上一點(diǎn),且BE>DE,連結(jié)CE并延長(zhǎng)交AD于F,連結(jié)AE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點(diǎn)G,連結(jié)EG,求EA+EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB內(nèi)部的一條射線(xiàn),且OF平分∠AOE.
(1)若∠EOB=30°,則∠COF= ;
(2)若∠COF=20°,則∠EOB= ;
(3)若∠COF=n°,則∠EOB= (用含n的式子表示).
(4)當(dāng)射線(xiàn)OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),請(qǐng)把圖補(bǔ)充完整;此時(shí),∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com