【題目】紙片中,,.如圖,直角頂點(diǎn)在原點(diǎn),點(diǎn)軸負(fù)半軸上,當(dāng)點(diǎn)軸上向上移動時,點(diǎn)也隨之在軸上向右移動,當(dāng)點(diǎn)到達(dá)原點(diǎn)時,點(diǎn)停止移動.在移動過程中,點(diǎn)到原點(diǎn)的最大距離是__________

【答案】

【解析】

B1C1的中點(diǎn)E,連接OE、A1E,利用直角三角形的性質(zhì)得到OE=2,再根據(jù)勾股定理求出A1E的長度,即可得到OE、A1三點(diǎn)在一條直線上時,點(diǎn)A到原點(diǎn)的距離最大.

如圖,取B1C1的中點(diǎn)E,連接OE、A1E,當(dāng)O、E、A1三點(diǎn)在一條直線上時,點(diǎn)A到原點(diǎn)的距離最大,

∵△B1C1O是直角三角形,點(diǎn)EB1C1的中點(diǎn),

OE=B1C1=2,C1E=2,

A1C1=2,∠A1C1B1=90

A1E=,

∴點(diǎn)A到原點(diǎn)的最大距離是,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),與x軸的另外一個交點(diǎn)為C

1)填空:b  c  ,點(diǎn)C的坐標(biāo)為 

2)如圖1,若點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為mPQOQ的比值為y,求ym的數(shù)學(xué)關(guān)系式,并求出PQOQ的比值的最大值.

3)如圖2,若點(diǎn)P是第四象限的拋物線上的一點(diǎn).連接PBAP,當(dāng)∠PBA+CBO45°時.求△PBA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A1,m),B4,n)平移后的對應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)yx+b的圖象交于點(diǎn)A14),點(diǎn)Bn,-1).

1)求nb的值;

2)直接寫出一次函數(shù)值小于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BCECD邊上一點(diǎn),將BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax+bx+ca≠0)的圖象如圖所示,以下結(jié)論中正確的個數(shù)是( 。

abc0、②3a2b、③mam+babm為任意實(shí)數(shù))、④4a2b+c0

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點(diǎn)的橫坐標(biāo)表示科技館從8:30開門后經(jīng)過的時間分鐘,縱坐標(biāo)表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為,10:00之后來的游客較少可忽略不計(jì).

1請寫出圖中曲線對應(yīng)的函數(shù)解析式;

2為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進(jìn)入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A,B兩點(diǎn),拋物線上另有一點(diǎn) Cx軸下方,且使ΔOCA∽ΔOBC.

(1)求線段OC的長度;

(2)設(shè)直線BCy軸交于點(diǎn)D,點(diǎn)CBD的中點(diǎn)時,求直線BD和拋物線的解析式,

(3)(2)的條件下,點(diǎn)P是直線BC下方拋物線上的一點(diǎn),過P于點(diǎn)E,作PF//ABBD于點(diǎn)F,是否存在一點(diǎn)P,使得最大,若存在,請求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖等邊的邊長為,點(diǎn),點(diǎn)同時從點(diǎn)出發(fā),點(diǎn)沿的速度向點(diǎn)運(yùn)動,點(diǎn)沿的速度也向點(diǎn)運(yùn)動,直到到達(dá)點(diǎn)時兩點(diǎn)都停止運(yùn)動,若的面積為,點(diǎn)的運(yùn)動時間為,則下列最能反映之間函數(shù)關(guān)系的圖象是( )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案