已知四邊形ABCD的對(duì)角線AC與BD交于點(diǎn)O,給出下列四個(gè)論斷:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
請(qǐng)你從中選擇兩個(gè)論斷作為條件,以“四邊形ABCD為平行四邊形”作為結(jié)論,完成下列各題:
①構(gòu)造一個(gè)真命題,畫圖并給出證明;
②構(gòu)造一個(gè)假命題,舉反例加以說(shuō)明.
見解析
解:(1)①④為論斷時(shí):
∵AD∥BC,
∴∠DAC=∠BCA,∠ADB=∠DBC.
又∵OA=OC,
∴△AOD≌△COB.
∴AD=BC.
∴四邊形ABCD為平行四邊形.
(2)②④為論斷時(shí),此時(shí)一組對(duì)邊平行,另一組對(duì)邊相等,可以構(gòu)成等腰梯形.

如果①②結(jié)合,那么這些線段所在的兩個(gè)三角形是SSA,不一定全等,那么就不能得到相等的對(duì)邊平行;如果①③結(jié)合,和①②結(jié)合的情況相同;如果①④結(jié)合,由對(duì)邊平行可得到兩對(duì)內(nèi)錯(cuò)角相等,那么AD,BC所在的三角形全等,也得到平行的對(duì)邊也相等,那么是平行四邊形;最易舉出反例的是②④,它有可能是等腰梯形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

準(zhǔn)備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

分別以?ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形外部時(shí),連接GF,EF.請(qǐng)判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形內(nèi)部時(shí),連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,下列結(jié)論中錯(cuò)誤的是( 。
A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在?ABCD中,CE⊥AB,垂足為E,若∠A=120°,則∠BCE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A、B、C為一個(gè)平行四邊形的三個(gè)頂點(diǎn),且A、B、C三點(diǎn)的坐標(biāo)分別為(3,3)、(6,4)、(4,6)
(1)請(qǐng)直接寫出這個(gè)平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo);
(2)在△ABC中,試求出AB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AD∥BC,請(qǐng)?zhí)砑右粋(gè)條件:      ,使四邊形ABCD為平行四邊形(不添加任何輔助線).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題是假命題的是( 。
A.不在同一直線上的三點(diǎn)確定一個(gè)圓
B.矩形的對(duì)角線互相垂直且平分
C.正六邊形的內(nèi)角和是720°
D.角平分線上的點(diǎn)到角兩邊的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD中,,DF⊥AB于點(diǎn)E,且DF=DC,連接FC,則∠ACF的度數(shù)為     度.

查看答案和解析>>

同步練習(xí)冊(cè)答案